• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and application of multigrid methods in CFD for turbine rim sealing

Hills, N. J. January 1996 (has links)
No description available.
2

回転乱流場におけるバースト過程の条件付き平均と確率モデル

植木, 良昇, UEKI, Yoshinori, 辻, 義之, TSUJI, Yoshiyuki, 中村, 育雄, NAKAMURA, Ikuo 02 1900 (has links)
No description available.
3

Transitions d'écoulements en cavité chauffée latéralement : application à la croissance cristalline / Transitions of flows in laterally heated cavity : application to crystalline growth

Medelfef, Abdessamed 17 June 2019 (has links)
Les instabilités hydrodynamiques en cavité chauffée latéralement jouent un rôle important dans certains processus de fabrication de matériaux tels que le procédé de Bridgman horizontal. En effet, le fluide (métal liquide qui va se solidifier) est le siège d’une circulation thermoconvective due à l’existence d’un gradient de température horizontal qui est susceptible de devenir instationnaire via des instabilités oscillatoires. La connaissance et la maîtrise de ces instabilités sont donc primordiales afin de pouvoir améliorer la qualité des cristaux obtenus par cette technique. Dans cette thèse, nous nous sommes intéressés en premier aux instabilités affectant la circulation convective dans une cavité tridimensionnelle de dimensions 4×2×1. (longueur × largeur × hauteur). Grâce aux techniques numériques de continuation, nous avons pu obtenir les solutions stationnaires et oscillatoires, ainsi que leur stabilité, jusqu’à l’apparition de la quasi-périodicité en fonction du nombre de Grashof Gr et pour un nombre de Prandtl allant de 0 à 0,025. Ensuite, pour un éventuel contrôle des instabilités, nous nous sommes intéressés aux effets induits par la rotation de la cavité. Nous avons tout d’abord considéré un modèle monodimensionnel que nous avons développé durant cette thèse. Ce modèle analytique, bien que simplifié, est en très bon accord avec les observations en dynamique des écoulements atmosphériques (déviation des masses fluides vers la droite de la composante de vitesse dominante et vents thermiques). La stabilité linéaire de cet écoulement est ensuite effectuée en fonction du taux de rotation donné par le nombre de Taylor et du nombre de Grashof pour un nombre de Prandtl allant de 0 à 10. Nous avons pu montrer à travers ce modèle que la rotation possède un caractère stabilisant vis-à-vis de ce type d’écoulement. Enfin, nous nous sommes focalisés sur les effets de la rotation sur l’écoulement pleinement tridimensionnel dans la cavité de dimensions 4×2×1. Nous avons mis en évidence deux régimes d’écoulements : un régime dominé par la convection, où la circulation du fluide est déviée par la rotation dans la diagonale de la cavité, et un deuxième régime dominé par la rotation où la circulation du fluide est concentrée dans les couches limites dites d’Ekman et de Stewartson. Un très bon accord est observé entre le modèle analytique simplifié et la simulation numérique tridimensionnelle. / Hydrodynamic instabilities in laterally heated cavities play an important role in some material processing techniques such as the horizontal Bridgman process. Indeed, the fluid (liquid metal to be solidified) is the seat of a thermoconvective circulation due to the existence of a horizontal temperature gradient which is likely to become unsteady via oscillatory instabilities. The knowledge and the control of these instabilities are thus essential in order to be able to improve the quality of the crystals obtained by this technique. In this thesis, we are first interested in the instabilities of the convective circulation in a three-dimensional cavity of dimensions 4×2×1 (length × width × height). Thanks to the numerical continuation techniques, we were able to obtain the stationary and oscillatory solutions, as well as their stability, until the appearance of the quasi-periodicity according to the Grashof number Gr and for a Prandtl number Pr ranging from 0 to 0.025.Then, the effects induced by a rotation of the cavity around the vertical axis parallel to gravity (for a possible control of the instabilities) are studied and a one-dimensional model developed during this thesis was first considered. This analytical model, although simplified, is in very good agreement with the observations of the atmospheric flows (deviation of the fluid masses towards the right of the component of the dominant velocity and thermal winds). The linear stability of this flow as well as an energy analysis at the thresholds are then performed as a function of the rotation rate given by the Taylor number Ta and the Grashof number Gr for a Prandtl number Pr ranging from 0 to 10. Through this model, we have been able to show that the rotation has a stabilizing effect on this type of flow.We finally focused on the effects of this type of rotation on the steady fully threedimensional flow observed in the cavity 4×2×1 at low Grashof numbers.We have highlighted two flow regimes: a regime dominated by convection where the fluid circulation, deviated by the rotation, occurs in the diagonal of the cavity, and a second regime dominated by rotation where the fluid circulation is concentrated in the so-called Ekman and Stewartson boundary layers. A very good agreement is observed between the simplified analytical model and the three-dimensional numerical simulation.
4

Forçage harmonique d'écoulements en rotation : vents zonaux, ondes inertielles et instabilités.

Sauret, Alban 01 February 2013 (has links)
Une grande quantité d'énergie est présente dans les mouvements de rotations propre et orbitale des planètes. Des forçages harmoniques tels que les déformations de marées, la précession ou la libration peuvent en convertir une partie pour générer des écoulements dans les couches fluides d'une planète. Ces écoulements restent largement méconnus même s'ils sont importants pour contraindre des modèles d'intérieur planétaire ou expliquer la présence de champs magnétiques dans certains astres.Dans cette thèse, nous étudions les mécanismes engendrés par ces forçages en combinant une approche théorique, expérimentale et numérique et soulignons la généricité des phénomènes observés. L'étude d'un forçage de libration longitudinale, i.e. des oscillations de la vitesse de rotation d'un astre, montre la présence d'un écoulement zonal généré par des interactions non-linéaires dans les couches visqueuses. Nous étudions ensuite l'instabilité qui apparaît à la paroi pour des amplitudes de libration suffisantes et qui peut transférer de l'énergie vers le volume du fluide. Finalement, une étude expérimentale de forçage de marées dans une sphère met en évidence que l'excitation directe d'ondes inertielles induit un écoulement zonal intense et localisé. Cet écoulement peut se déstabiliser par une instabilité de cisaillement et générer un écoulement turbulent dans tout le volume.Pour finir, nous considérons la pertinence de ces résultats pour des applications géo-/astrophysiques, telles que l'étude des océans internes sous la surface de glace des satellites joviens Ganymède, Encelade et Europe. / A huge amount of energy is stored in the spin and orbital motions of any planet. Harmonic forcings such as libration, precession and tides are capable of conveying a portion of this energy to drive intense three-dimensional flows in liquid layers of planetary bodies. The generated flows remain largely unknown even if they are important to constraint model of planetary interior or to explain the presence of magnetic fields in some astrophysical bodies.In this thesis, we study the mechanisms induced by these forcings by combining theoretical, experimental and numerical approaches and we highlight the genericity of the observed phenomena. The study of a longitudinal libration forcing, corresponding to oscillations of the rotation rate of a planet, shows the presence of a mean zonal flow generated by non-linear interactions in the viscous layers. We then study the instability which appears at the outer boundary at sufficiently large libration amplitude or small Ekman number and which can transfer energy to the bulk of the fluid. Finally, an experimental study of tidal forcing in a sphere shows that the nonlinear self-interaction of excited inertial waves may drive an intense and localised axisymmetric jet, which becomes unstable at low Ekman number following a shear instability, generating space-filling turbulence.To conclude, we consider the relevance of these results to geo-/astrophysical applications, such as the subsurface oceans of the icy satellites Ganymede, Enceladus or Europa.
5

An experimental study of the spread of buoyant water into a rotating environment

Crawford, Thomas Joseph January 2017 (has links)
This thesis examines previously unresolved issues regarding the fluid dynamics of the spread of buoyant water into a rotating environment. We focus in particular on the role that finite potential vorticity and background turbulence play in determining the flow properties. When water of an anomalous density enters into an oceanic basin, gravity-driven surface flows can be established as a result of the density difference. These flows are often of a sufficiently large scale that the dynamics are affected by the Coriolis force arising from the rotation of the earth. This causes the formation of a large outflow gyre near to the source which feeds into a propagating gravity current that is confined to the coast. Previous experimental work in this field has sought to simplify the problem through the use of a point source and a quiescent ambient. We extend this work to provide a better representation of the real-world flow by introducing a source of finite depth and background turbulence to the rotating ambient. This study seeks to answer three key questions that are critical to the understanding of the flow behaviour in this scenario. First, what is the effect of the finite potential vorticity of the outflow on the properties of the outflow vortex and the boundary current? Second, what role does the presence of the the outflow vortex play in determining the behaviour of the current? Third, what is the effect of background turbulence on the flow properties? To carry out the investigation, experiments were conducted in the laboratory and compared with a theoretical description of the flow. The currents are generated inside a rotating tank filled with saltwater by the continuous release of buoyant freshwater from a source structure located at the fluid surface. A horizontal source of finite depth is used to introduce finite potential vorticity into the outflow. The impact of background turbulence is examined by introducing an oscillating grid into the rotating tank. We find that the finite potential vorticity of the outflow plays an important role in determining the flow properties for sufficiently low Rossby and Froude number. As the value of these parameters is increased a zero potential vorticity model is able to capture the key elements of the flow behaviour. The outflow vortex is found to act as a time-varying source to the boundary current, with the current velocity fixed by the vortex velocity field. The vortex vorticity is seen to decrease with time, while the vortex radius continues to increase at late times despite the vortex having reached a limiting depth, which enables potential vorticity to be conserved and the current to be supplied with a non-zero velocity. Finally, the structure of the background turbulence is found to be key in determining the effect that it has on the flow properties, with different behaviours observed for three-dimensional and quasi- two-dimensional turbulence.
6

Dynamics of laboratory models of the wind-driven ocean circulation

Kiss, Andrew Elek, Andrew.Kiss@anu.edu.au January 2001 (has links)
This thesis presents a numerical exploration of the dynamics governing rotating flow driven by a surface stress in the " sliced cylinder " model of Pedlosky & Greenspan (1967) and Beardsley (1969), and its close relative, the " sliced cone " model introduced by Griffiths & Veronis (1997). The sliced cylinder model simulates the barotropic wind-driven circulation in a circular basin with vertical sidewalls, using a depth gradient to mimic the effects of a gradient in Coriolis parameter. In the sliced cone the vertical sidewalls are replaced by an azimuthally uniform slope around the perimeter of the basin to simulate a continental slope. Since these models can be implemented in the laboratory, their dynamics can be explored by a complementary interplay of analysis and numerical and laboratory experiments. ¶ In this thesis a derivation is presented of a generalised quasigeostrophic formulation which is valid for linear and moderately nonlinear barotropic flows over large-amplitude topography on an f-plane, yet retains the simplicity and conservation properties of the standard quasigeostrophic vorticity equation (which is valid only for small depth variations). This formulation is implemented in a numerical model based on a code developed by Page (1982) and Becker & Page (1990). ¶ The accuracy of the formulation and its implementation are confirmed by detailed comparisons with the laboratory sliced cylinder and sliced cone results of Griffiths (Griffiths & Kiss, 1999) and Griffiths & Veronis (1997), respectively. The numerical model is then used to provide insight into the dynamics responsible for the observed laboratory flows. In the linear limit the numerical model reveals shortcomings in the sliced cone analysis by Griffiths & Veronis (1998) in the region where the slope and interior join, and shows that the potential vorticity is dissipated in an extended region at the bottom of the slope rather than a localised region at the east as suggested by Griffiths & Veronis (1997, 1998). Welander's thermal analogy (Welander, 1968) is used to explain the linear circulation pattern, and demonstrates that the broadly distributed potential vorticity dissipation is due to the closure of geostrophic contours in this geometry. ¶ The numerical results also provide insight into features of the flow at finite Rossby number. It is demonstrated that separation of the western boundary current in the sliced cylinder is closely associated with a " crisis " due to excessive potential vorticity dissipation in the viscous sublayer, rather than insufficient dissipation in the outer western boundary current as suggested by Holland & Lin (1975) and Pedlosky (1987). The stability boundaries in both models are refined using the numerical results, clarifying in particular the way in which the western boundary current instability in the sliced cone disappears at large Rossby and/or Ekman number. A flow regime is also revealed in the sliced cylinder in which the boundary current separates without reversed flow, consistent with the potential vorticity " crisis " mechanism. In addition the location of the stability boundary is determined as a function of the aspect ratio of the sliced cylinder, which demonstrates that the flow is stabilised in narrow basins such as those used by Beardsley (1969, 1972, 1973) and Becker & Page (1990) relative to the much wider basin used by Griffiths & Kiss (1999). ¶ Laboratory studies of the sliced cone by Griffiths & Veronis (1997) showed that the flow became unstable only under anticyclonic forcing. It is shown in this thesis that the contrast between flow under cyclonic and anticyclonic forcing is due to the combined effects of the relative vorticity and topography in determining the shape of the potential vorticity contours. The vorticity at the bottom of the sidewall smooths out the potential vorticity contours under cyclonic forcing, but distorts them into highly contorted shapes under anticyclonic forcing. In addition, the flow is dominated by inertial boundary layers under cyclonic forcing and by standing Rossby waves under anticyclonic forcing due to the differing flow direction relative to the direction of Rossby wave phase propagation. The changes to the potential vorticity structure under strong cyclonic forcing reduce the potential vorticity changes experienced by fluid columns, and the flow approaches a steady free inertial circulation. In contrast, the complexity of the flow structure under anticyclonic forcing results in strong potential vorticity changes and also leads to barotropic instability under strong forcing. ¶ The numerical results indicate that the instabilities in both models arise through supercritical Hopf bifurcations. The two types of instability observed by Griffiths & Veronis (1997) in the sliced cone are shown to be related to the western boundary current instability and " interior instability " identified by Meacham & Berloff (1997). The western boundary current instability is trapped at the western side of the interior because its northward phase speed exceeds that of the fastest interior Rossby wave with the same meridional wavenumber, as discussed by Ierley & Young (1991). ¶ Numerical experiments with different lateral boundary conditions are also undertaken. These show that the flow in the sliced cylinder is dramatically altered when the free-slip boundary condition is used instead of the no-slip condition, as expected from the work of Blandford (1971). There is no separated jet, because the flow cannot experience a potential vorticity " crisis " with this boundary condition, so the western boundary current overshoots and enters the interior from the east. In contrast, the flow in the sliced cone is identical whether no-slip, free-slip or super-slip boundary conditions are applied to the horizontal flow at the top of the sloping sidewall, except in the immediate vicinity of this region. This insensitivity results from the extremely strong topographic steering near the edge of the basin due to the vanishing depth, which demands a balance between wind forcing and Ekman pumping on the upper slope, regardless of the lateral boundary condition. The sensitivity to the lateral boundary condition is related to the importance of lateral friction in the global vorticity balance. The integrated vorticity must vanish under the no-slip condition, so in the sliced cylinder the overall vorticity budget is dominated by lateral viscosity and Ekman friction is negligible. Under the free-slip condition the Ekman friction assumes a dominant role in the dissipation, leading to a dramatic change in the flow structure. In contrast, the much larger depth variation in the sliced cone leads to a global vorticity balance in which Ekman friction is always dominant, regardless of the boundary condition.

Page generated in 0.0832 seconds