• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 11
  • 11
  • 10
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 114
  • 55
  • 55
  • 54
  • 36
  • 35
  • 30
  • 28
  • 17
  • 16
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Random Linear Network Coding Enabled Routing Protocol in UAV Swarm Networks: Development, Emulation, and Optimization

Xu, Bowen 10 December 2021 (has links)
The development of Unmanned Aerial Vehicles (UAVs) and fifth-generation (5G) wireless technology provides more possibilities for wireless networks. The application of UAVs is gradually evolving from individual UAVs performing tasks to UAV swarm performing tasks in concert. A UAV swarm network is when many drones work cooperatively in a swarm mode to achieve a particular goal. Due to the UAV swarm's easy deployment, self-organization, self-management, and high flexibility, it can provide robust and efficient wireless communications in some unique scenarios, such as emergency communications, hotspot region coverage, sensor networks, and vehicular networks. Therefore, UAV networks have attracted more and more attention from commercial and military; however, many problems need to be resolved before UAV cellular communications become a reality. One of the most challenging core components is the routing protocol design in the UAV swarm network. Due to the high mobility of UAVs, the position of each UAV changes dynamically, so problems such as high latency, high packet loss rate, and even loss of connection arise when UAVs are far apart. These problems dramatically reduce the transmission rate and data integrity for traditional routing protocols based on path discovery. This thesis focuses on developing, emulating, and optimizing a flooding-based routing protocol for UAV swarm using Random Linear Network Coding (RLNC) to improve the latency and bit rate and solve the packet loss problem without routing information and network topology. RLNC can reduce the number of packets demand in some hops. Due to this feature of RLNC, when relay transmitter UAVs or the destination receiver UAV receive sufficient encoded packets from any transmitter UAVs, the raw data can be decoded. For those relay transmitter UAVs in the UAV swarm network that already received some encoded packets in previous hops but not enough to decode the raw data, only need to receive the rest of the different encoded packets needed for decoding. Thus, flooding-based routing protocol significantly improves transmission efficiency in the UAV swarm network. / Master of Science / People are used to using fiber, 4G, and Wi-Fi in the city, but numerous people still live in areas without Internet access. Moreover, in some particular scenarios like large-scale activities, remote areas, and military operations, when the cellular network cannot provide enough bandwidth or good signal, UAV wireless network would be helpful and provide stable Internet access. Successful UAV test flights can last for several weeks, and researchers' interest in high-altitude long-endurance (HALE) UAVs are booming. HALE UAVs will create Wi-Fi or other network signals for remote areas, including polar regions, which will allow millions of people to enter the information society and connect to the Internet. The development of UAV and 5G provides more possibilities for wireless networks. UAV applications have evolved from individual UAV performing tasks to UAV swarm performing tasks. A UAV swarm network is where multiple drones work in tandem to achieve a particular goal. It can provide robust and efficient wireless communications in unique scenarios. As a result, UAVs are receiving attention from both commercial and military. However, there are still many problems that need to be resolved before the actual use of UAVs. One of the biggest challenges is routing protocol which is how UAVs communicate with each other and select routes. As the location of UAVs is constantly changing, this leads to delays, data loss, or complete loss of connectivity. Ultimately these issues can lead to slow transmission speed and lack of data integrity for traditional routing protocols based on path discovery. This thesis focuses on developing, emulating, and optimizing a flooding-based routing protocol for the UAV swarm. Specifically, this protocol uses RLNC, which can reduce the number of packets demand in some hops so that the latency and transmission speed will be improved, and the data loss problem will also be solved. Due to this feature of RLNC, when any receiver receives enough encoded packets from any transmitter, the original data can be decoded. Some receivers that already received some encoded packets in the previous transmission only need to receive the rest of the different encoded packets needed for decoding. Therefore, flooding-based routing protocol significantly improves transmission efficiency for UAV swarm networks.
42

Efficient Bandwidth Constrained Routing Protocols For Communication Networks

Hadimani, Vijayalakshmi 05 1900 (has links)
QoS routing is one of the major building blocks for supporting QoS in communication networks and, hence, a necessary component of future communication networks. Bandwidth- Constrained Routing Algorithm (BCRA) may help to satisfy QoS requirements such as end-to-end delay, delay-jitter etc when WFQ-like (Weighted Fair Queuing) scheduling mechanisms are deployed. The existing algorithms for bandwidth constrained routing suffer from high message overhead and have a high computational and space complexity. The work presented in the thesis, therefore, focuses on the different techniques that an be used to reserve bandwidth for a unicast connection with low protocol overhead in terms of number of messages. We have compared the performance of the proposed routing algorithms using simulation studies with other bandwidth constrained routing algorithms. The call blocking ratio and message overhead have been used as the performance metric to compare the proposed algorithm with the existing ones. We present three source routing algorithms for unicast connections satisfying the band- width requirement. The first two routing algorithms are based on the partitioning of the network. The link-state broadcasts are limited to the partition. In the first algorithm, the source node queries the other partitions for the state information on a connection request and computes the path based on the information received from the other partitions. The second algorithm is based on state aggregation. The aggregated state of other partitions is maintained at every node. The source node finds a feasible path based on the aggregated information. The path is expanded in every partition, if required, at the time of resource reservation. The third QoS routing algorithm uses the Distance Vector Tables to find a route for a connection. If the shortest path satisfies the bandwidth requirement, then it is selected; otherwise a random deviation is taken at the point where bandwidth requirement is not satisfied and shortest path algorithm is again followed. In all the three algorithms presented, the packets carry the entire path information to the destination node. Therefore, no per connection information is required to be maintained at the intermediate nodes. Simulation results indicate that the proposed algorithms indeed help educing the protocol overhead considerably, and at the same time they give comparable or better performance in terms of resource utilization across a wide range of workloads.
43

Performance Evaluation of Different RPL Formation Strategies / Prestationsutvärdering av olika RPL-bildningsstrategier

Chang, Ziyi January 2023 (has links)
The size of the IoT network is expanding due to advancements in the IoT field, leading to increased interest in the multi-sink mechanism. The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) is a representative IoT protocol that focuses on the Low-Power and Lossy Networks. However, research on comparing multi-sink strategies within the RPL network is limited. Therefore, this project aims to compare three common strategies: multiple-DODAG in one instance, virtual root, and multiple-instance. Using these strategies, we design and implement RPL networks and conduct simulations in various scenarios. Five different topologies are utilized in the experiments, considering different packet loss rates. Performance evaluation of each strategy is conducted using the Cooja simulator and Contiki-NG system, with a focus on the number of RPL control packets, Packet Delivery Ratio (PDR), and energy consumption. The results indicate that both the virtual root and multiple-DODAG strategies perform well with low packet loss, while the virtual root strategy outperforms the multiple-DODAG strategy with high packet loss. Additionally, the virtual root strategy incurs slightly higher energy costs than the multiple-DODAG strategy. Furthermore, the multiple-instance strategy demonstrates poor performance in most scenarios, except for the packet delivery ratio under high packet loss conditions. Besides the analysis, potential areas for future research on the RPL’s multi-sink mechanism are finally identified. / Storleken på IoT-nätverket expanderar på grund av framsteg inom IoT-området, vilket leder till ökat intresse för multi-sink-mekanismen. IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) är ett representativt IoT-protokoll som fokuserar på Nät med låg effekt och förluster. Forskningen om jämförelse av multi-sink-strategier inom RPL-nätverket är dock begränsad. Därför syftar detta projekt till att jämföra tre vanliga strategier: multiple - DODAG i en instans, virtuell rot och multi-instans. Med hjälp av dessa strategier designar och implementerar vi RPL-nätverk och genomför simuleringar i olika scenarier. Fem olika topologier används i experimenten, med olika packet loss rate. Prestationsutvärdering av varje strategi utförs med hjälp av Cooja-simulatorn och Contiki-NG-systemet, med fokus på antalet RPL control packets, Packet Delivery Ratio (PDR) och energiförbrukning. Resultaten indikerar att både virtuell rot och multiple-DODAG strategier fungerar bra vid låg datapaketförlust, medan den virtuella rotstrategin överträffar multiple-DODAG strategin vid hög datapaketförlust. Dessutom medför den virtuella rotstrategin något högre energikostnader än flera DODAG-strategin. Dessutom visar multi-instans-strategin dålig prestanda i de flesta scenarier, förutom när det gäller datapaketleveransförhållandet under höga datapaketförlustförhållanden. Utöver analysen identifieras slutligen potentiella områden för framtida forskning om RPL-protokollets multi-sink-mekanism.
44

Development of a Monte Carlo ad hoc routing protocol for connectivity improvement

Perold, Philippus Rudolf 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / Please refer to full text for abstract.
45

Node reliance : an approach to extending the lifetime of wireless sensor networks

Boyd, Alan W. F. January 2010 (has links)
A Wireless Sensor Network (WSN) consists of a number of nodes, each typically having a small amount of non-replenishable energy. Some of the nodes have sensors, which may be used to gather environmental data. A common network abstraction used in WSNs is the (source, sink) architecture in which data is generated at one or more sources and sent to one or more sinks using wireless communication, possibly via intermediate nodes. In such systems, wireless communication is usually implemented using radio. Transmitting or receiving, even on a low power radio, is much more energy-expensive than other activities such as computation and consequently, the radio must be used judiciously to avoid unnecessary depletion of energy. Eventually, the loss of energy at each node will cause it to stop operating, resulting in the loss of data acquisition and data delivery. Whilst the loss of some nodes may be tolerable, albeit undesirable, the loss of certain critical nodes in a multi-hop routing environment may cause network partitions such that data may no longer be deliverable to sinks, reducing the usefulness of the network. This thesis presents a new heuristic known as node reliance and demonstrates its efficacy in prolonging the useful lifetime of WSNs. The node reliance heuristic attempts to keep as many sources and sinks connected for as long as possible. It achieves this using a reliance value that measures the degree to which a node is relied upon in routing data from sources to sinks. By forming routes that avoid high reliance nodes, the usefulness of the network may be extended. The hypothesis of this thesis is that the useful lifetime of a WSN may be improved by node reliance routing in which paths from sources to sinks avoid critical nodes where possible.
46

Design and evaluation of security mechanism for routing in MANETs : elliptic curve Diffie-Hellman cryptography mechanism to secure Dynamic Source Routing protocol (DSR) in Mobile Ad Hoc Network (MANET)

Almotiri, Sultan H. January 2013 (has links)
Ensuring trustworthiness through mobile nodes is a serious issue. Indeed, securing the routing protocols in Mobile Ad Hoc Network (MANET) is of paramount importance. A key exchange cryptography technique is one such protocol. Trust relationship between mobile nodes is essential. Without it, security will be further threatened. The absence of infrastructure and a dynamic topology changing reduce the performance of security and trust in mobile networks. Current proposed security solutions cannot cope with eavesdroppers and misbehaving mobile nodes. Practically, designing a key exchange cryptography system is very challenging. Some key exchanges have been proposed which cause decrease in power, memory and bandwidth and increase in computational processing for each mobile node in the network consequently leading to a high overhead. Some of the trust models have been investigated to calculate the level of trust based on recommendations or reputations. These might be the cause of internal malicious attacks. Our contribution is to provide trustworthy communications among the mobile nodes in the network in order to discourage untrustworthy mobile nodes from participating in the network to gain services. As a result, we have presented an Elliptic Curve Diffie-Hellman key exchange and trust framework mechanism for securing the communication between mobile nodes. Since our proposed model uses a small key and less calculation, it leads to a reduction in memory and bandwidth without compromising on security level. Another advantage of the trust framework model is to detect and eliminate any kind of distrust route that contain any malicious node or suspects its behavior.
47

Relais coopératifs dans un réseau de capteurs : performances limites et stratégies / Cooperative Relaying in sensor network : performances, limits and startegies

Ben Nacef, Ahmed 24 November 2011 (has links)
Les réseaux de capteurs ont connu un grand essor ces dix dernières années. Ils interviennent dans tous les domaines de notre vie quotidienne et la rendent plus aisée. Malgré ce grand succès des réseaux de capteurs, plusieurs problèmes restent encore ouverts. La capacité énergétique et la fragilité du canal radio des réseaux de capteurs affectent gravement leurs performances. La communication coopérative représente une solution efficace pour lutter contre l'instabilité du canal radio et afin d'économiser plus d'énergie. Nous proposons dans ce manuscrit, d'utiliser la communication coopérative, en premier lieu, au niveau de la couche MAC afin de mettre en place un accès au canal coopératif et non égoïste. En second lieu, nous utilisons la communication coopérative au niveau de la couche réseau dans le but d'établir des chemins de routage plus stables et plus robustes. / Wireless sensor networks (WSN) have known a great development during the last decade. They intervene in all the domain of our everyday life to make it easier. Despite the success of WSN several problems have to be solved. The restricted energy capacity and the randomness of the wireless channel seriously affect the performances of the WSN. Cooperative communication represents an efficient solution to reduce the instability of the wireless channel and to optimize energy. In this thesis we propose to use cooperative communications at the MAC and network layer in order to set up a cooperative access to the channel and to establish more robust routing paths.
48

Análise da associação dos protocolos de roteamento AODV e DSR com o algoritmo Gossip, sistema de Quorum e com um novo algoritmo de economia de energia, PWSave. / Association analisys of the routing protocols AODV and DSR with Gossip, Quorum system and a new algorithm, PWSave.

Rosa, Renata Lopes 15 July 2009 (has links)
Este trabalho estuda a implementação do sistema de Quorum associado ao algoritmo epidêmico Gossip, a implementação de um novo algoritmo de economia de energia - o PWSave - e o protocolo de roteamento AODV em um cenário com e sem falhas de uma rede ad hoc com mobilidade. Optou-se por implementar este trabalho em um ambiente de simulação, dado que a modelagem matemática da associação do Gossip, Quorum e PWSave com os 80 nós - quantidade de nós escolhida para o ambiente de simulação - apresentaria maior complexidade e demora ao abranger todas as variáveis de ambiente desse conjunto de soluções para cada nó presente na rede. A rotina de programação - com o uso de loops para os trabalhos repetitivos - presente no ambiente de simulação permite que os experimentos sejam efetuados mais rapidamente e com menor probabilidade de erros. Os estudos [1], [2] demonstraram, respectivamente, que soluções abrangendo o algoritmo epidêmico Gossip e o sistema de compartilhamento de dados Quorum apresentam resultados favoráveis para uma rede ad hoc com alta mobilidade. Em [1] é apresentado um cenário muito próximo ao implementado neste trabalho, com a utilização do algoritmo Gossip ao protocolo de roteamento Ad-Hoc On-Demand Distance Vector (AODV). Os parâmetros analisados foram os mesmos, a saber: routes requests (RREQ), perda de pacote, vazão e latência. Os resultados do cenário simulado mostram uma diminuição no número de RREQs em uma rede ad hoc, e os demais parâmetros, medidos no ambiente de simulação, são pouco afetados. De acordo com [2] constata-se que há um aumento da resiliência e da vazão da rede e uma menor sobrecarga causada pela distribuição da informação na rede ad hoc pelo sistema de Quorum. A associação do algoritmo Gossip com o sistema de Quorum resultou em uma diminuição considerável de RREQs e perda de pacotes, mas o parâmetro de consumo de energia, que deve ser um fator importante em uma rede ad hoc e/ou uma rede sensor, não apresentou nenhuma melhora. Portanto, foi implementada uma solução adicional ao Gossip e ao Quorum, com o desenvolvimento de um novo algoritmo de economia de energia denominado de PWSave, no simulador Glomosim com o protocolo de roteamento AODV. O PWSave é responsável pelo adormecimento dos nós da rede que não estejam processando informações, ou seja, os nós, no momento do adormecimento, não poderão trocar dados ou auxiliar na formação de rotas da rede. O PWSave associado ao Gossip e ao sistema de Quorum apresenta resultados que refletem ma diminuição no consumo de energia próxima a 10% em comparação com a solução da associação do Gossip com o sistema de Quorum sem a implementação de PWSave. Os resultados da simulação mostram que a associação de Gossip, Quorum e PWSave acarreta uma redução no número de RREQs e na taxa de perda de pacotes sem degradar muito características de fluxo e latência, além de propiciar uma considerável economia no consumo de energia. / This work studies the implementation of the Quorum system associated with the Gossip algorithm, the implementation of a new power saving algorithm - the PWSave - and the routing protocol AODV in a scenario with and without failures of an ad hoc network with mobility. It has been chosen to implement this work in an environment of simulation, because the mathematical modeling of the association of Gossip, Quorum and PWSave with 80 nodes - number of nodes that has been chosen for the simulation environment - would present a higher complexity and delay to address all environment variables of the solutions set for each node present in the network. The programming routine - with the use of loops for the repetitive works - present in the simulation environment allows the experiments to be performed faster and with less probability of errors. The studies [1], [2] have shown, respectively, that solutions covering the Gossip epidemic algorithm and the system for sharing data Quorum show favorable results for an ad hoc network with high mobility. In [1] is presented a scenario very close to that implemented in this work, using the Gossip algorithm associated to the routing protocol Ad-Hoc On-Demand Distance Vector (AODV). The parameters analyzed were the same: routes requests (RREQ), packet loss, throughput and latency. The simulated scenario results show a decrease in the number of RREQs in an ad hoc network, and the other parameters, measured in the simulation environment, are little afected. According to [2] it is noted that there is an increase in the resilience and throughput of the network and a lower overload caused by the distribution of the information in the ad hoc network by the Quorum system. The association of the Gossip algorithm with the Quorum system resulted in a considerable decrease of RREQs and packet loss, but the parameter of energy consumption, which is an important factor in an ad hoc network and/or a sensor network, shows no improvement. Therefore, an additional solution was associated to the Gossip and to the Quorum, with the development of a new power saving algorithm named PWSave, in the simulator Glomosim with the routing protocol AODV. The PWSave is responsable for the sleeping state of the network nodes when they are not processing information: the nodes at the time of sleep cannot exchange data or assist in the building of network routes. The PWSave associated with the Gossip and Quorum system provides a decrease of the energy consumption close to 10% compared to the association solution of the Gossip with the Quorum system without the PWSave implementation. The results of simulation show that the association of the Gossip, Quorum and PWSave produces a reduction in the number of RREQs and in the rate of packets loss without degrading much the throughput and latency characteristics, providing a considerable energy consumption economy.
49

Load balancing and context aware enhancements for RPL routed Internet of Things

Qasem, Mamoun January 2018 (has links)
Internet of Things (IoT) has been paving the way for a plethora of potential applications, which becomes more spatial and demanding. The goal of this work is to optimise the performance within the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) in the network layer. RPL still suffers from unbalanced load traffic among the candidate parents. Consequently, the overloaded parent node drains its energy much faster than other candidate parent nodes. This may lead to an early disconnection of a part of the network topology and affect the overall network reliability. To solve this problem, a new objective function (OF) has been proposed to usher better load balancing among the bottleneck candidate parents, and keep the overloaded nodes lifetime thriving to longer survival. Moreover, several IoT applications have antagonistic requirements but pertinent, which results in a greater risk of affecting the network reliability, especially within the emergency scenarios. With the presence of this challenging issue, the current standardised RPL OFs cannot sufficiently fulfil the antagonistic needs of Low-power and Lossy Networks (LLNs) applications. In response to the above issues, a context adaptive OF has been proposed to facilitate exchanging the synergy information between the application and network layers. Thus, the impact of the antagonistic requirements based on context parameters will be mitigated via rationalizing the selection decision of the routing path towards the root node. We implemented the proposed protocol and verified all our findings through excessive measurements via simulations and a realistic deployment using a real testbed of a multi-hop LLNs motes. The results proved the superiority of our solution over the existing ones with respect to end-to-end delay, packet delivery ratio and network lifetime. Our contribution has been accepted initially to be adopted within the standard body Internet Engineering Task Force (IETF).
50

Análise da associação dos protocolos de roteamento AODV e DSR com o algoritmo Gossip, sistema de Quorum e com um novo algoritmo de economia de energia, PWSave. / Association analisys of the routing protocols AODV and DSR with Gossip, Quorum system and a new algorithm, PWSave.

Renata Lopes Rosa 15 July 2009 (has links)
Este trabalho estuda a implementação do sistema de Quorum associado ao algoritmo epidêmico Gossip, a implementação de um novo algoritmo de economia de energia - o PWSave - e o protocolo de roteamento AODV em um cenário com e sem falhas de uma rede ad hoc com mobilidade. Optou-se por implementar este trabalho em um ambiente de simulação, dado que a modelagem matemática da associação do Gossip, Quorum e PWSave com os 80 nós - quantidade de nós escolhida para o ambiente de simulação - apresentaria maior complexidade e demora ao abranger todas as variáveis de ambiente desse conjunto de soluções para cada nó presente na rede. A rotina de programação - com o uso de loops para os trabalhos repetitivos - presente no ambiente de simulação permite que os experimentos sejam efetuados mais rapidamente e com menor probabilidade de erros. Os estudos [1], [2] demonstraram, respectivamente, que soluções abrangendo o algoritmo epidêmico Gossip e o sistema de compartilhamento de dados Quorum apresentam resultados favoráveis para uma rede ad hoc com alta mobilidade. Em [1] é apresentado um cenário muito próximo ao implementado neste trabalho, com a utilização do algoritmo Gossip ao protocolo de roteamento Ad-Hoc On-Demand Distance Vector (AODV). Os parâmetros analisados foram os mesmos, a saber: routes requests (RREQ), perda de pacote, vazão e latência. Os resultados do cenário simulado mostram uma diminuição no número de RREQs em uma rede ad hoc, e os demais parâmetros, medidos no ambiente de simulação, são pouco afetados. De acordo com [2] constata-se que há um aumento da resiliência e da vazão da rede e uma menor sobrecarga causada pela distribuição da informação na rede ad hoc pelo sistema de Quorum. A associação do algoritmo Gossip com o sistema de Quorum resultou em uma diminuição considerável de RREQs e perda de pacotes, mas o parâmetro de consumo de energia, que deve ser um fator importante em uma rede ad hoc e/ou uma rede sensor, não apresentou nenhuma melhora. Portanto, foi implementada uma solução adicional ao Gossip e ao Quorum, com o desenvolvimento de um novo algoritmo de economia de energia denominado de PWSave, no simulador Glomosim com o protocolo de roteamento AODV. O PWSave é responsável pelo adormecimento dos nós da rede que não estejam processando informações, ou seja, os nós, no momento do adormecimento, não poderão trocar dados ou auxiliar na formação de rotas da rede. O PWSave associado ao Gossip e ao sistema de Quorum apresenta resultados que refletem ma diminuição no consumo de energia próxima a 10% em comparação com a solução da associação do Gossip com o sistema de Quorum sem a implementação de PWSave. Os resultados da simulação mostram que a associação de Gossip, Quorum e PWSave acarreta uma redução no número de RREQs e na taxa de perda de pacotes sem degradar muito características de fluxo e latência, além de propiciar uma considerável economia no consumo de energia. / This work studies the implementation of the Quorum system associated with the Gossip algorithm, the implementation of a new power saving algorithm - the PWSave - and the routing protocol AODV in a scenario with and without failures of an ad hoc network with mobility. It has been chosen to implement this work in an environment of simulation, because the mathematical modeling of the association of Gossip, Quorum and PWSave with 80 nodes - number of nodes that has been chosen for the simulation environment - would present a higher complexity and delay to address all environment variables of the solutions set for each node present in the network. The programming routine - with the use of loops for the repetitive works - present in the simulation environment allows the experiments to be performed faster and with less probability of errors. The studies [1], [2] have shown, respectively, that solutions covering the Gossip epidemic algorithm and the system for sharing data Quorum show favorable results for an ad hoc network with high mobility. In [1] is presented a scenario very close to that implemented in this work, using the Gossip algorithm associated to the routing protocol Ad-Hoc On-Demand Distance Vector (AODV). The parameters analyzed were the same: routes requests (RREQ), packet loss, throughput and latency. The simulated scenario results show a decrease in the number of RREQs in an ad hoc network, and the other parameters, measured in the simulation environment, are little afected. According to [2] it is noted that there is an increase in the resilience and throughput of the network and a lower overload caused by the distribution of the information in the ad hoc network by the Quorum system. The association of the Gossip algorithm with the Quorum system resulted in a considerable decrease of RREQs and packet loss, but the parameter of energy consumption, which is an important factor in an ad hoc network and/or a sensor network, shows no improvement. Therefore, an additional solution was associated to the Gossip and to the Quorum, with the development of a new power saving algorithm named PWSave, in the simulator Glomosim with the routing protocol AODV. The PWSave is responsable for the sleeping state of the network nodes when they are not processing information: the nodes at the time of sleep cannot exchange data or assist in the building of network routes. The PWSave associated with the Gossip and Quorum system provides a decrease of the energy consumption close to 10% compared to the association solution of the Gossip with the Quorum system without the PWSave implementation. The results of simulation show that the association of the Gossip, Quorum and PWSave produces a reduction in the number of RREQs and in the rate of packets loss without degrading much the throughput and latency characteristics, providing a considerable energy consumption economy.

Page generated in 0.0814 seconds