• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 1
  • Tagged with
  • 25
  • 25
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The development of an integrated routing and carbon dioxide emissions model for goods vehicles

Palmer, Andrew January 2007 (has links)
The issues of global warming and climate change are a worldwide concern and the UK government has committed itself to major reductions in CO2 emissions, the most significant of the six greenhouse gases. Road transport currently accounts for about 22% of total UK emissions of CO2, and has been steadily rising. Therefore, initiatives are required to try and reduce the gas emissions in this sector. The aim of this research has been to develop a computer based vehicle routing model that calculates the overall amount of CO2 emitted from road journeys, as well as time and distance. The model has been used to examine a number of delivery strategies to assess how CO2 emissions vary. The aim has not been to produce new mathematical theories, but to produce an innovative basis for routing which will provide new information and knowledge about how CO2 emissions vary for different minimisation and congestion criteria. The approach used in this research brings together elements from transportation planning and environmental modelling combined with logistics based vehicle routing techniques. The model uses a digitised road network containing predicted traffic volumes, to which speed flow formulae are applied so that a good representation of speed can be generated on each of the roads. This means that the model is uniquely able to address the issue of congestion in the context of freight vehicle routing. It uses driving cycle data to apply variability to the generated speeds to reflect acceleration and deceleration so that fuel consumption, and therefore CO2, can be estimated. Integrated within the model are vehicle routing heuristics to enable routes to be produced which minimise the specified criterion of time, distance or CO2. The results produced by the model show that there is a potential to reduce CO2 emissions by about 5%. However, when other transport externalities are considered overall benefits are dependent on road traffic volumes.
12

Aplicação de uma abordagem adaptativa de busca tabu a problemas de roteirização e programação de veículos.

Barbosa, Juliana Maria Rangel 23 June 2005 (has links)
Made available in DSpace on 2016-06-02T19:52:13Z (GMT). No. of bitstreams: 1 DissJMRB.pdf: 944400 bytes, checksum: b37a0f175baab577681e6785f305edee (MD5) Previous issue date: 2005-06-23 / This project consists in the refinement of the tabu search adaptive approach HTSA (PUREZA, 1996) and the analysis of its performance when applied to the classical Vehicle Routing Problem and to the Vehicle Routing Problem with Time Windows. HTSA promotes the integration of intensification and diversification strategies through the systematic variation of the values of selected tabu parameters, mostly based on the analysis of search trajectory patterns. The development of new implementations based on tabu search (GLOVER, 1989; GLOVER & LAGUNA, 1997) is an interesting avenue of research since tabu search has offered new marks on solution quality in routing problems, usually outperforming other methods. The results obtained with the application of HTSA approach to a set of classical routing instances and to a set of routing with times windows instances indicate quality solutions within reasonable computational times when compared to the results provided by competitive methods in the literature. / O corrente projeto tem como objetivo o refinamento da abordagem adaptativa de busca tabu HTSA (PUREZA, 1996) e a verificação de seu desempenho quando aplicada ao Problema de Roteirização de Veículos clássico e ao Problema de Roteirização com Janelas de Tempo. A abordagem HTSA tem como objetivo a integração de estratégias de intensificação e diversificação, consistindo na variação sistemática de valores de parâmetros tabu selecionados e apoiada principalmente na análise de padrões da trajetória da busca. O desenvolvimento de novas abordagens baseadas na meta-heurística busca tabu (GLOVER, 1989; GLOVER & LAGUNA, 1997) é uma linha de pesquisa interessante uma vez que a busca tabu tem oferecido novas marcas em qualidade da solução em problemas de Roteirização de veículos e suas variantes, geralmente superando outros métodos. Os resultados obtidos com a aplicação da abordagem HTSA a instâncias de roteirização de veículos clássicas e com janela de tempo indicam soluções de qualidade em tempos computacionais razoáveis quando comparadas aos resultados de métodos competitivos da literatura.
13

Programação de frota de apoio a operações \'offshore\' sujeita à requisição de múltiplas embarcações para uma mesma tarefa. / Fleet scheduling subject to multiple vessels for the each task in an offshore operation.

André Bergsten Mendes 09 November 2007 (has links)
A presente pesquisa aborda um problema de roteirização e programação de veículos incorporando uma nova restrição operacional: a requisição simultânea de múltiplos veículos para atendimento da demanda. Trata-se de uma característica encontrada em operações de apoio à exploração de petróleo \"offshore\", em que mais de uma embarcação é requerida para executar tarefas de reboque e lançamento de linhas de ancoragem. Esta imposição, somada às restrições de janela de tempo, precedência entre tarefas, autonomia das embarcações e atendimento integral da demanda, configuram este problema. A programação é orientada pela minimização dos custos variáveis da operação e dos custos associados ao nível de serviço no atendimento. Este problema é uma variação do problema clássico de roteirização e programação de veículos com janela de tempo, de classe NP-Difícil. Nesta pesquisa, propõe-se modelar e resolver o problema em escala real por meio do algoritmo \"branch and cut\" acoplado às heurísticas de busca em vizinhança \"local branching\" e \"variable neighborhood search\". Para gerar as soluções iniciais será empregado o método \"feasibility pump\" e uma heurística construtiva. / This research focuses a fleet scheduling problem with new operational constraints: each task requiring multiple types of vehicles simultaneously. This kind of operation occurs in offshore exploitation and production sites, when more than one vessel is needed to accomplish the tugging and mooring of oil platforms. Other constraints are maintained such as time windows, precedence between tasks, route duration and the demand attendance. The solution schedules are cost oriented, which encompasses the routing variable costs and the customer service costs. This is a variation of the classical fleet routing and scheduling, which is an NP-Hard problem. This research aims to solve the real scale problem through a combined use of branch and cut strategy with local search algorithms such as local branching and variable neighborhood search. An efficient heuristic rule will be used in order to generate initial solutions using the feasibility pump method.
14

Routing and Scheduling with Time Windows: Models and Algorithms for Tramp Sea Cargos and Rail Car-Blocks

Daniel, Aang 20 November 2006 (has links)
This thesis introduces a new model formulation to solve routing and scheduling problems, with the main applications in answering routing and scheduling problems faced by a sea-cargo shipping company and a railroad company. For the work in sea-cargo routing and scheduling, we focus on the tramp shipping operation. Tramp shipping is a demand-driven type of shipping operation which does not have fixed schedules. The schedules are based on the pickup and download locations of profitable service requests. Given set of products distributed among a set of ports, with each product having pickup and download time windows and a destination port, the problem is to find the schedule for a fleet of ships that maximizes profit over a specified time horizon. The problem is modeled as a Mixed Integer Non-Linear Program and reformulated as an equivalent Mixed Integer Linear Program. Three heuristic methods, along with computational results, are presented. We also exploit the special structure enjoyed by our model and introduce an upper-bounding problem to the model. With a little modification, the model is readily extendable to reflect soft time windows and inter-ship cargo-transfers. The other part of our work deals with train routing and scheduling. A typical train shipment consists of a set of cars having a common origin and destination. To reduce the handling of individual shipments as they travel, shipments are grouped into blocks. The problem is that given sets of blocks to be carried from origins to destinations, construct the most cost effective train routes and schedules and determine block-to-train assignments, such that the number of block transfers (block swaps) between trains, the number of trains used, and some other cost measures are minimized. Incorporating additional precedence requirements, the modeling techniques from the shipping research are employed to formulate a mixed integer nonlinear program for this train routing and scheduling problem. Computational results are presented.
15

Dynamic vehicle routing : solution methods and computational tools / Méthodes de résolution et outils informatiques pour les tournées de véhicules dynamiques

Pillac, Victor 28 September 2012 (has links)
Les activités de transport jouent un rôle crucial autant dans le domaine de la production que dans celui des services. En particulier, elles permettent d’assurer la distribution de biens et de services entre fournisseurs, unités de production, entrepôts, distributeurs, et clients finaux. Plus spécifiquement, les problèmes de tournées de véhicules (VRP) considèrent la mise au point d’un ensemble de tournées de coût minimal servant la demande en biens ou en services d’un ensemble de clients distribués géographiquement, tout en vérifiant un ensemble de contraintes opérationnelles. Alors qu’il s’agissait d’un problème statique, des avancées technologiques récentes permettent aux organisations de gérer leur flotte de véhicules en temps réel. Cependant, ces nouvelles technologies introduisent également une plus grande complexité dans les tâches de gestion de flotte, révélant une demande pour des outils d’aide à la décision dédiés aux problèmes de tournées de véhicules dynamiques. Dans ce contexte, les contributions de la présente thèse de doctorat s’organisent autour de trois axes : (i) elle présente un état de l’art détaillé des problèmes de tournées dynamiques; (ii) elle introduit des frameworks d’optimisation génériques adaptés à une grande variété de problèmes ; (iii) elle définit un problème de tournées novateur et aux nombreuses applications. / Within the wide scope of logistics management,transportation plays a central role and is a crucialactivity in both production and service industry.Among others, it allows for the timely distributionof goods and services between suppliers, productionunits, warehouses, retailers, and final customers.More specifically, Vehicle Routing Problems(VRPs) deal with the design of a set of minimal costroutes that serve the demand for goods orservices of a set of geographically spread customers,satisfying a group of operational constraints.While it was traditionally a static problem, recenttechnological advances provide organizations withthe right tools to manage their vehicle fleet in realtime. Nonetheless, these new technologies alsointroduce more complexity in fleet managementtasks, unveiling the need for decision support systemsdedicated to dynamic vehicle routing. In thiscontext, the contributions of this Ph.D. thesis arethreefold : (i) it presents a comprehensive reviewof the literature on dynamic vehicle routing ; (ii)it introduces flexible optimization frameworks thatcan cope with a wide variety of dynamic vehiclerouting problems ; (iii) it defines a new vehicle routingproblem with numerous applications.
16

Métodos mono e multiobjetivo para o problema de escalonamento de técnicos de campo. / Mono and multiobjective methods for the field technician scheduling problem.

Damm, Ricardo de Brito 28 March 2016 (has links)
Um tema pouco estudado na literatura, mas frequentemente encontrado por empresas prestadoras de serviço, é o Problema de Escalonamento de Técnicos de Campos (Field Technician Scheduling Problem). O problema consiste em associar um número de tarefas - em diversos locais, com diferentes prioridades e com janelas de tempo - a uma quantidade de técnicos - com diferentes horários de expediente e com habilidades distintas - que saem no início do horário de trabalho da sede da empresa, para onde devem retornar antes do fim do expediente. Cada tarefa é atendida por um único técnico. Esse problema é estudado neste trabalho. A primeira parte do trabalho apresenta um modelo de programação linear inteira mista (PLIM) e, dada a complexidade do problema, heurísticas construtivas e meta-heurísticas foram desenvolvidas. Na função objetivo, procura-se principalmente maximizar o número ponderado de tarefas executadas em um dia de trabalho, de acordo com as suas prioridades. Em linhas gerais, as heurísticas construtivas ordenam as tarefas de acordo com um critério pré-estabelecido e, em seguida, designam cada uma a um dos técnicos capazes de realiza-la sem violar as restrições do problema. Tendo em conta o bom desempenho obtido em outros problemas semelhantes, foi adotado um Algoritmo Genético denominado Biased Random-Key Genetic Algorithms (BRKGA), que utiliza chaves aleatórias para codificar e decodificar as soluções. Codificadores e decodificadores adaptados ao problema foram desenvolvidos e testes computacionais são apresentados. As soluções obtidas em problemas de pequenas dimensões são comparadas com as soluções ótimas conhecidas e, para aprimorar a avaliação do desempenho nas instâncias médias e grandes, quatro procedimentos para obter limitantes superiores foram propostos. Testes computacionais foram realizados em 1040 instâncias. O BRKGA encontrou 99% das 238 soluções ótimas conhecidas e, nas 720 instâncias de dimensões médias e grandes, ficou em média a 3,8% dos limitantes superiores. As heurísticas construtivas superaram uma heurística construtiva da literatura em 90% das instâncias. A segunda parte do trabalho apresenta uma nova abordagem para o Problema de Escalonamento de Técnicos de Campo: um modelo biobjetivo, onde uma segunda função objetivo buscará que as tarefas prioritárias sejam realizadas o mais cedo possível. Uma versão multiobjectivo do BRKGA foi desenvolvida, considerando diversas estratégias para classificar a população do algoritmo e escolher as melhores soluções (estratégias de elitismo). Codificadores e decodificadores foram criados para o problema multiobjectivo. Os resultados computacionais obtidos são comparados com os resultados de um Algoritmo Genético conhecido na literatura, o Nondominated Sorting Genetic Algorithm II (NSGA II). Para instâncias de pequenas dimensões, os resultados da meta-heurística proposta também são comparados com a fronteira ótima de Pareto de 234 instâncias, obtidas por enumeração completa. Em média, o BRKGA multiobjectivo encontrou 94% das soluções da fronteira ótima de Pareto e, nas instâncias médias e grandes, superou o desempenho do NSGA-II nas medidas de avaliação adotadas (porcentagem de soluções eficientes, hipervolume, indicador epsílon e cobertura). / An important topic in service companies, but little studied until now, is the field technician scheduling problem. In this problem, technicians have to execute a set of jobs or service tasks. Technicians have different skills and working hours. Tasks are in different locations within a city, with different time windows, priorities, and processing times. Each task is executed by only one technician. This problem is addressed in this thesis. The first part of the research presents the mixed integer linear programming model (MILP) and, due to the complexity of this problem, constructive heuristics and metaheuristics were proposed. The objective function is to maximize the sum of the weighted performed tasks in a day, based on the priority of tasks. In general terms, in the proposed constructive heuristics, jobs are ordered according to a criterion and, after that, tasks are assigned to technicians without violating constraints. A Genetic Algorithm (the Biases Randon Key Genetic Algorithm - -RKGA) is applied to the problem, based on its success in similar problems; the BRKGA uses random keys and a decoder transforms each chromosome of the Genetic Algorithm into a feasible solution of the problem. Decoders and encoders adapted to the problem were developed and computational tests are presented. A comparison between the solutions of the heuristic methods and optimal solutions values was also conducted for small instances and, to analyze medium and large instances, four upper bound models were proposed. Computational experiments with 1040 instances were carried out. The BRKGA reached 99% of the 238 optimal solutions and, for 720 medium and large instances, the average upper bound gap was 3,8%. Constructive heuristics overcame a heuristic of the literature in 90% of the instances. The second part of this research presents a new approach of the Field Technician Scheduling Problem: a multiobjective model, with a second objective function to execute the priority tasks as soon as possible. A multiobjective BRKGA was developed, with different strategies to classify the Genetic Algorithm population and to select the elite solutions (elite strategies). Decoders and encoders were developed for the multiobjective problem too. The results were compared with a known Genetic Algorithm, the Nondominated Sorting Genetic Algorithm II (NSGA II). For 234 small instances, the results were compared with the Pareto optimal solutions, obtained by complete enumeration. On average, the BRKGA found 94% of the Pareto optimal solutions and, for 720 medium and large instances, outperformed the NSGA-II by means of the measures adopted (percentage of efficient solutions, hypervolume, epsilon and coverage).
17

Dynamic vehicle routing : solution methods and computational tools

Pillac, Victor 28 September 2012 (has links) (PDF)
Within the wide scope of logistics management,transportation plays a central role and is a crucialactivity in both production and service industry.Among others, it allows for the timely distributionof goods and services between suppliers, productionunits, warehouses, retailers, and final customers.More specifically, Vehicle Routing Problems(VRPs) deal with the design of a set of minimal costroutes that serve the demand for goods orservices of a set of geographically spread customers,satisfying a group of operational constraints.While it was traditionally a static problem, recenttechnological advances provide organizations withthe right tools to manage their vehicle fleet in realtime. Nonetheless, these new technologies alsointroduce more complexity in fleet managementtasks, unveiling the need for decision support systemsdedicated to dynamic vehicle routing. In thiscontext, the contributions of this Ph.D. thesis arethreefold : (i) it presents a comprehensive reviewof the literature on dynamic vehicle routing ; (ii)it introduces flexible optimization frameworks thatcan cope with a wide variety of dynamic vehiclerouting problems ; (iii) it defines a new vehicle routingproblem with numerous applications.
18

Métodos mono e multiobjetivo para o problema de escalonamento de técnicos de campo. / Mono and multiobjective methods for the field technician scheduling problem.

Ricardo de Brito Damm 28 March 2016 (has links)
Um tema pouco estudado na literatura, mas frequentemente encontrado por empresas prestadoras de serviço, é o Problema de Escalonamento de Técnicos de Campos (Field Technician Scheduling Problem). O problema consiste em associar um número de tarefas - em diversos locais, com diferentes prioridades e com janelas de tempo - a uma quantidade de técnicos - com diferentes horários de expediente e com habilidades distintas - que saem no início do horário de trabalho da sede da empresa, para onde devem retornar antes do fim do expediente. Cada tarefa é atendida por um único técnico. Esse problema é estudado neste trabalho. A primeira parte do trabalho apresenta um modelo de programação linear inteira mista (PLIM) e, dada a complexidade do problema, heurísticas construtivas e meta-heurísticas foram desenvolvidas. Na função objetivo, procura-se principalmente maximizar o número ponderado de tarefas executadas em um dia de trabalho, de acordo com as suas prioridades. Em linhas gerais, as heurísticas construtivas ordenam as tarefas de acordo com um critério pré-estabelecido e, em seguida, designam cada uma a um dos técnicos capazes de realiza-la sem violar as restrições do problema. Tendo em conta o bom desempenho obtido em outros problemas semelhantes, foi adotado um Algoritmo Genético denominado Biased Random-Key Genetic Algorithms (BRKGA), que utiliza chaves aleatórias para codificar e decodificar as soluções. Codificadores e decodificadores adaptados ao problema foram desenvolvidos e testes computacionais são apresentados. As soluções obtidas em problemas de pequenas dimensões são comparadas com as soluções ótimas conhecidas e, para aprimorar a avaliação do desempenho nas instâncias médias e grandes, quatro procedimentos para obter limitantes superiores foram propostos. Testes computacionais foram realizados em 1040 instâncias. O BRKGA encontrou 99% das 238 soluções ótimas conhecidas e, nas 720 instâncias de dimensões médias e grandes, ficou em média a 3,8% dos limitantes superiores. As heurísticas construtivas superaram uma heurística construtiva da literatura em 90% das instâncias. A segunda parte do trabalho apresenta uma nova abordagem para o Problema de Escalonamento de Técnicos de Campo: um modelo biobjetivo, onde uma segunda função objetivo buscará que as tarefas prioritárias sejam realizadas o mais cedo possível. Uma versão multiobjectivo do BRKGA foi desenvolvida, considerando diversas estratégias para classificar a população do algoritmo e escolher as melhores soluções (estratégias de elitismo). Codificadores e decodificadores foram criados para o problema multiobjectivo. Os resultados computacionais obtidos são comparados com os resultados de um Algoritmo Genético conhecido na literatura, o Nondominated Sorting Genetic Algorithm II (NSGA II). Para instâncias de pequenas dimensões, os resultados da meta-heurística proposta também são comparados com a fronteira ótima de Pareto de 234 instâncias, obtidas por enumeração completa. Em média, o BRKGA multiobjectivo encontrou 94% das soluções da fronteira ótima de Pareto e, nas instâncias médias e grandes, superou o desempenho do NSGA-II nas medidas de avaliação adotadas (porcentagem de soluções eficientes, hipervolume, indicador epsílon e cobertura). / An important topic in service companies, but little studied until now, is the field technician scheduling problem. In this problem, technicians have to execute a set of jobs or service tasks. Technicians have different skills and working hours. Tasks are in different locations within a city, with different time windows, priorities, and processing times. Each task is executed by only one technician. This problem is addressed in this thesis. The first part of the research presents the mixed integer linear programming model (MILP) and, due to the complexity of this problem, constructive heuristics and metaheuristics were proposed. The objective function is to maximize the sum of the weighted performed tasks in a day, based on the priority of tasks. In general terms, in the proposed constructive heuristics, jobs are ordered according to a criterion and, after that, tasks are assigned to technicians without violating constraints. A Genetic Algorithm (the Biases Randon Key Genetic Algorithm - -RKGA) is applied to the problem, based on its success in similar problems; the BRKGA uses random keys and a decoder transforms each chromosome of the Genetic Algorithm into a feasible solution of the problem. Decoders and encoders adapted to the problem were developed and computational tests are presented. A comparison between the solutions of the heuristic methods and optimal solutions values was also conducted for small instances and, to analyze medium and large instances, four upper bound models were proposed. Computational experiments with 1040 instances were carried out. The BRKGA reached 99% of the 238 optimal solutions and, for 720 medium and large instances, the average upper bound gap was 3,8%. Constructive heuristics overcame a heuristic of the literature in 90% of the instances. The second part of this research presents a new approach of the Field Technician Scheduling Problem: a multiobjective model, with a second objective function to execute the priority tasks as soon as possible. A multiobjective BRKGA was developed, with different strategies to classify the Genetic Algorithm population and to select the elite solutions (elite strategies). Decoders and encoders were developed for the multiobjective problem too. The results were compared with a known Genetic Algorithm, the Nondominated Sorting Genetic Algorithm II (NSGA II). For 234 small instances, the results were compared with the Pareto optimal solutions, obtained by complete enumeration. On average, the BRKGA found 94% of the Pareto optimal solutions and, for 720 medium and large instances, outperformed the NSGA-II by means of the measures adopted (percentage of efficient solutions, hypervolume, epsilon and coverage).
19

Uma abordagem de otimização para a roteirização e programação de navios: um estudo de caso na indústria petrolífera

Rodrigues, Vinícius Picanço 26 May 2014 (has links)
Made available in DSpace on 2016-06-02T19:52:05Z (GMT). No. of bitstreams: 1 6045.pdf: 14667118 bytes, checksum: f13a2c0983ea271f2e60ed298b158806 (MD5) Previous issue date: 2014-05-26 / Agência Nacional de Petróleo / This work studies the ship routing and scheduling problem in oil transportation from offshore platforms to inland terminals. It is motivated by a real situation in a Brazilian oil company. Brazil is one of the world's greatest oil producers and has around 80% of its oil explored in offshore mode. Thus, transportation costs play an important role in achieving operational excellence, and the recent growth trends for oil exploration in Brazil has transformed its operations and demanded agile and effective decision support systems for addressing the oil sector dynamism. This work's goal consists in developing and applying an optimization-based approach using a mixed integer linear programming model in real decision-making situations, along with a solution method based on mathematical programming (MIP-heuristics) in order to solve the model, such as relax-and-fix. The proposed model is inspired in a problem formulation for pickup and delivery with time windows (PDPTW) and heterogeneous fleet, where costs incurred for fuel consumption and fleet contracts is the objective function to be minimized. The pickup and delivery pairs are predetermined and the model's main decision refers to ship allocation to these pairs compounding a route. Furthermore, some additional constraints are modeled and proposed, such as terminal access and platform mooring limitation according to ship types, as well as product blend incompatibility. The model was implemented in a modeling language along with an optimizarion software. Computational experiments with the model and the heuristics are presented for different data sets supplied by the case study company. These experiments show the potential benefits of this approach for finding good solutions for the problem as well as the dificulty in finding solutions for realistic instances due to its NP-hard characteristics. / Este trabalho estuda o problema de roteirização e programação de navios que realizam o escoamento de petróleo das plataformas marítimas para terminais terrestres, motivado por uma situação real de uma empresa brasileira da indústria petrolífera. O Brasil é um dos maiores produtores mundiais de petróleo, e cerca de 80% de seu petróleo é explorado no mar. Dentro deste contexto, os custos de transporte desempenham um papel importante na busca pela excelência operacional e as tendências de crescimento da exploração de petróleo no Brasil têm tornado as operações mais complexas e demandantes de sistemas de apoio à decisão ágeis e eficazes que contemplem o dinamismo do setor petrolífero. O objetivo deste trabalho consiste em desenvolver e aplicar uma abordagem de otimização baseada em um modelo de programação linear inteira mista em situações reais de tomada de decisão, em conjunto com métodos de solução baseados em programação matemática (MIP-Heuristics) para resolver o modelo, como relax-and-fix. O modelo proposto é inspirado em uma formulação de problemas de coleta e entrega com janelas de tempo (pickup and delivery with time windows PDPTW) e frota heterogênea, no qual busca-se minimizar os custos decorrentes do consumo de combustível dos navios e contratos de afretamento. O modelo é do tipo origem-destino, no qual os pares coleta/entrega são pré-determinados e a decisão do modelo refere-se à alocação de navios para os diferentes pares, compondo uma rota. Além disso, são propostas restrições adicionais que contemplam limitações de acesso a terminais e de atracação em plataformas de acordo com os tipos de navio, além da incompatibilidade de mistura de produtos, entre outros. O modelo foi implementado utilizando uma linguagem de modelagem em conjunto com um software de otimização. Experimentos computacionais com o modelo e as heurísticas são apresentados para diferentes conjuntos de dados fornecidos pela empresa e comprovam o potencial das abordagens para encontrar boas soluções para o problema, mas também suas dificuldades para encontrar soluções para exemplares de tamanho realista, por tratar-se de um problema NP-difícil do ponto de vista de teoria de complexidade.
20

Volitelné aktivity v rozvrhování / Optional Activities in Scheduling

Vlk, Marek January 2021 (has links)
Scheduling allocates scarce resources to activities such that certain constraints are satisfied and specific objectives are optimized. The activities to be executed are com- monly known or determined a priori in the planning stage. To improve the flexibility of scheduling systems, the concept of optional activities was invented. Optional activities are those activities whose presence in the resulting schedule is to be decided. Rather than determining which activities need to be executed and scheduling them in two consecu- tive phases, flexibility and efficiency can be improved significantly when both activity selection and time allocation are integrated within the same solver. Such an approach was implemented in a few Constraint Programming solvers and manifested great perfor- mance on multiple scheduling problems. In this thesis, we apply the concept of optional activities to scheduling problems that do not seem to involve optional activities, such as the production scheduling problem with sequence-dependent non-overlapping setups, but also on problems beyond the scheduling domain, such as the multi-agent path finding problem and its extension with weighted and capacitated arcs. 1

Page generated in 0.1124 seconds