• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 4
  • 4
  • 1
  • Tagged with
  • 24
  • 24
  • 14
  • 12
  • 9
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Targeted Delivery of Cytotoxic Metal Complexes into Cancer Cells with and without Macromolecular Vehicles

Mitra, Raja January 2013 (has links) (PDF)
Anticancer active metal complexes such as cisplatin are routinely used for treating various cancers since 1978. However, the side effects of cisplatin overwhelm its therapeutic potential, especially in the latter stages of treatment. The nonspecific cytotoxicity of drugs could be avoided if targeted delivery to cancer cells is achieved using two different methodologies namely, enhanced permeability and retention in solid tumors (EPR) and receptor mediated endocytosis using a homing agent (RME). Ru(II)-arene complexes which are delivered specifically into cancer cells by the transferrin enzyme are less toxic compared to other metal complexes. The thesis describes the synthesis and use of Ru(II)-η6cymene complexes with different ancillary ligands which modulates the anticancer activity and the utility of two macromolecular vehicles in directed drug delivery. Ru(II)-η6cymene complexes with different heterocyclic ancillary ligands are synthesized and their anticancer activity tested against various cancer cell lines. Ruthenium complexes with mercaptobenzothiazoles are found to be quite active against the H460 cell lines that overexpress transferrin receptors and non-cytotoxic to the normal cell line, HEL299. Biophysical studies show that complexes (H1 and H8) can unwind the pBR322 DNA and inhibit the Topo IIα enzyme. A unique biphasic melting curve of CT DNA is observed in the presence of H1 which is attributed to formation of a dinuclear species (H20). Half-sandwich complexes of 6-thioguanine (6-TG) have also been prepared to improve the delivery and efficacy of 6-TG which is used in spite of a deleterious photoreaction. The Ru complexes cytotoxic to several leukemia cell lines. As they are photostable and anticancer active, they are better than 6-TG. Anticancer activity exhibiting piazselenols are used as ancillary ligands to make Ru(II)-arene complexes. Unfortunately, 1H NMR spectra suggests that piazselenol complexes dissociate in solution. However, the nitro substituted piazselenol and its Ru complex show the greatest cytotoxicity (<0.1 µM) against the A2780 cell line. The utility of PAMAM dendrimers and hyper branched polymers (hybramers) conjugated with a homing agent to target cancer cells by EPR and RME is probed. A cytotoxic copper complex (CuATSM) is covalently attached to the macromolecules through a disulfide linker, cleaved in the presence of GSH. Targeting efficacy of the folic acid-dendrimer conjugates is checked against two glioma cell lines. The folic acid-dendrimer conjugate is more active compared to dendrimer conjugate without folic acid against folate-receptor-overexpressing LN18 cell line. Biotin conjugated dendrimer shows better accumulation in HeLa cells, which require high amounts of biotin for growth. In vivo studies demonstrate that the conjugate can cross the blood-brain barrier. These studies suggest that PAMAM dendrimer can be used as a targeted delivery vehicle for cytotoxic metal complexes. Hyperbranched polymers decorated with propargyl groups and hydrophilic OH terminated TEG groups are attached to biotin and a cytotoxic Cu complex. (CuATSM-SS-CONH-N3) through ‘click’ reactions and tested against the HeLa cell line. On the basis of the studies conducted, it is concluded that targeted delivery of cytotoxic metal complexes are possible in the case of Ru(II) half-sandwich complexes and macromolecular vehicles like dendrimers are suitable for specifically delivering copper complexes into cancer cells.
22

Self-Assembly and Cytotoxic Activity of Homometallic and Heterometallic Coordination Architectures

Adeyemo, Aderonke Ajibola January 2017 (has links) (PDF)
The alluring order in which complex biological networks exist in nature stimulated the interest of chemists to replicate such systems synthetically. With such examples as the deoxyribonucleic acid (DNA) double helix and the phospholipid bilayers, the influence of forces within these networks are solely credited for their excellent stability. The synthetically ordered chemical networks are also held together by interactions within them with little or no external force as seen in the natural systems. This spontaneous and reversible association of molecules or ions to form larger, more complex entities according to the intrinsic information contained in the molecules themselves is known as self-assembly. The self-assembly process is pre-eminent to the formation of ordered structures emerging spontaneously from the precursors in which, the overall structure of the final assemblies is controlled by the symmetry of each of the building blocks. The highly ordered and thermodynamically stable scaffolds are formed via non-covalent interactions including hydrophobic interaction, π-stacking, dipole-dipole interaction, ion-dipole interaction, hydrogen bonding, Van der Waals forces, solvophobic interaction and reversible metal-ligand coordination. These non-covalent interactions are termed as supramolecular interactions. Among several of these self-assembly protocols, the directional metal-ligand coordination strategy has evolved to be a well-established process for the preparation of supramolecular ensembles with pre-defined shapes, cavities and functionalities in a “one-pot” synthesis. Coordination-driven self-assembly strategy is governed by the combination of electron-deficient metal centres and electron-rich organic ligands. The outcome of the final supramolecular architecture is determined by the choice of the pre-designed metal acceptor building blocks as well as the flexibility and steric demands of the ancillary organic ligands. Accurate stoichiometry of each of the building blocks is also a very important factor in coordination-driven self-assembly; although serendipity sometimes happen which is quite unexpected. A large number of these self-assembled supramolecular networks have found useful applications in optoelectronics, material chemistry, adsorption, drug delivery, catalysis, host-guest chemistry, photo- and electro-chemical sensing as well as prospective chemotherapeutics. Transition metals are widely desired as electron-deficient building blocks in supramolecular chemistry. They readily accept lone pair of electrons from electron-rich building blocks. The functional properties of these metals have also been considered during the pre-design of these electron acceptors such that the functional property of each metal can be induced in the final architecture. Pd(II) and Pt(II) metals are highly desirable electron acceptors in supramolecular self-assembly because of their rigid square-planar nature. Nonetheless, Ru(II) and Fe(II) have also been explored as electron acceptors based on their octahedral geometry. Electron-rich building blocks have lone pairs of electrons on their donor sites (nitrogen, oxygen or sulphur) which effortlessly donate electrons to electron-deficient building blocks. The pyridyl appended ligands have been mostly used as the electron-rich building blocks in the construction of supramolecular architectures because of their predictable coordination modes and the symmetrical nature. However, imidazole appended ligands holds a distinctive spot in supramolecular chemistry because of its rotational flexibility and unpredictable binding modes which may lead to uncommon architectures not obtainable with pyridyl appended ligands. Thus, imidazole-based supramolecular architectures are less explored because the outcome of the final architecture cannot be pre-determined during the design. Ruthenium p-cymene complexes have spurred much interest in the last two decades because they possess extremely stable octahedral geometry and has been extensively used in the construction of 2D and 3D supramolecular architectures. The recent search for viable alternatives to platinum drugs in cancer chemotherapy discovered ruthenium as an excellent alternative to platinum because of its low toxicity when compared to platinum. The robustness of the arene head on interaction with biomolecules and the accumulation of large molecular weight compounds specifically in cancer cells rather than in healthy cells also improved the activity of ruthenium supramolecular architectures in cancer therapy. This recent outcome has propelled significant research channelled towards synthesizing better ruthenium-based chemotherapeutics. Additionally, the presence of two different metals in a single self-assembled architecture may also impart an increased activity when compared to the individual activity of each metal. Thus, the heterometallic supramolecular architectures can open a new kind of chemotherapeutics which may give a distinct mechanistic pathway different from those reported in literature. Chapter 1 of this thesis describes the coordination-driven self-assembly strategy with specific emphasis on ruthenium p-cymene self-assembled architectures and their applications. A brief introduction on cancer and cancer therapy is discussed. The use of mononuclear and dinuclear metal-based chemotherapeutics is included while the use of heterometallic complexes as anticancer agents was also highlighted. Chapter 2 showcases the self-assembly of a series of 2D and 3D ruthenium(II) p-cymene architectures constructed from bidentate and tridentate rigid imidazole-based ligands and dinuclear ruthenium(II) building units. The influence of the rotational flexibility of the imidazole ligands on the final architecture was probed. In spite of the likelihood of the formation of different conformational isomeric architectures (syn and anti) and/or polymeric products due to free rotation on the donor sites of the imidazole ligands, the exclusive formation of a single conformational isomer (anti) as the only product turned out to be a noteworthy observation. This indicates that the coordination mode and flexibility of imidazole ligand can control and determine the geometry, topology and conformations of the final molecular architectures. Scheme 1: Self-assembly of 2D macrocycles [2 - 7](OTf)4 employing dinuclear ruthenium(II) building units [1a - 1c](OTf)2 and bidentate rigid imidazole ligands L1 - L2 in methanol at room temperature. Furthermore, the unexpected formation of a tetranuclear cationic macrocycle [8](OTf)4 was reported in the 2 + 3 self-assembly reaction of triazine-based tridentate imidazole ligand L3 and dinuclear ruthenium(II) building unit [1a](OTf)4 over the expected hexanuclear prismatic cage [8a](OTf)6 which is quite surprising. Scheme 2: Schematic representation of the formation of an unexpected tetranuclear macrocycle [8](OTf)4 over the expected hexanuclear prismatic cage [8a](OTf)6. Chapter 3 reports the synthesis of eight octanuclear cages via the coordination-driven self-assembly of two tetradentate pyridyl-based organic ligands and four dinuclear p-cymene Ru(II) acceptor clips. These octanuclear cages were explored in vitro as potential anticancer agents against human lung adenocarcinoma A549 and human cervical cancer HeLa cell lines. Four of the cages with polyaromatic spacers in their Ru(II) acceptor clip unit showed very low micromolar IC50 values and also possess higher anticancer activity than cisplatin against the tested cancer cell lines. The four dinuclear p-cymene Ru(II) acceptor clips A3 in OC-3 and OC-7 revealed some kind of synergy which is evident in their IC50 values against the tested cancer cell lines. In addition, OC-3 and OC-7 trigger both early and late apoptotic phases while OC-4 and OC-8 trigger majorly late apoptotic phase in the cancer cell lines tested. The mechanistic pathway by which cell death is progressing is through the generation of reactive oxygen species (ROS) which is of significant amount in OC-4 and OC-8. Scheme 3: Self-assembly of the discrete octanuclear cages (OC-1 - OC-8) in methanol at room temperature and the schematic illustration of the apoptosis mechanistic pathway. Chapter 4 describes the use of “metalloligands” as electron-rich building blocks and the subsequent use of the metalloligand for “one-pot” self-assembly reactions in the presence of electron-deficient metal acceptor building blocks. The pyridyl donors are the most preferred in metalloligands because of their predictable directionality in self-assembly. The introduction of a second metal into the ligand component of the self-assembled architecture is to bestow additional functionality as well as to construct elegantly designed discrete heterobimetallic supramolecular architectures. Four discrete Ru(II)-Pt(II) hexanuclear trigonal prismatic cages were synthesized employing a tritopic platinum(II) metalloligand and four p-cymene ruthenium(II) clips via coordination-driven self-assembly. The formation of these cages were confirmed by well-known spectroscopic techniques and their structural features was elucidated by geometry optimization. In vitro anticancer studies of these heterometallic cages failed because of solubility challenges in the culture media presumably due to their high molecular weights and many alkyl groups. Scheme 4: Energy minimized structures of the heterometallic trigonal prismatic cages 3a (left) and 3b (right). Hydrogen atoms have been removed for the sake of clarity [Ru: green, Pt: pink, O: red, N: blue, P: orange, C: grey]. Chapter 5 discusses the synthesis of two bidentate platinum(II) metalloligands as well as the self-assembly of six new heterometallic rectangles obtained from four Ru2(OOꓵOO)2(p-cymene)2Cl2 pillars and two bidentate pyridyl-based platinum(II) metalloligands. The Ru4Pt2 and Ru4Pt4 rectangles were structurally characterized and supported by geometry optimisation. Additionally, two Ru4Pt2 and two Ru4Pt4 rectangles were examined for their anticancer properties in eight human cancer cell lines with the aim of checking if the platinum metal centres in the metalloligands can enhance the anticancer activity of the rectangles. The results showed that these heterometallic rectangles are cytotoxic against the cancer cell lines tested but the incorporation of platinum(II) metal(s) into the metalloligand did not further enhance the cytotoxicity in the rectangles tested as hypothesized. The mechanism of cell death is via the generation of reactive oxygen species (ROS) and two Ru4Pt4 rectangles activates both early and late apoptosis. Cell cycle analysis showed that one of the Ru4Pt4 rectangles is a moderate inhibitor of cell cycle progression at the sub G1 phase similar to cisplatin while nuclear condensation and cell blebbing in the cells was also observed in the presence of the two Ru4Pt4 rectangles tested. The overall activity of the heterometallarectangles against the cancer cell lines tested was increased when they exist as a single entity thus reiterating the importance of heterobimetallic supramolecular architectures in cancer therapy. Scheme 5: Schematic diagram of the discrete Ru4Pt4 heterometallic rectangles and illustration of the cell death pathway. The results of the investigation reported in this thesis contribute to the rapidly developing field of organometallic ruthenium(II) self-assembled anticancer chemotherapeutics with specific evidences of the mechanistic pathway of cell death. This results can further guide the design and development of better chemotherapeutics for future use.
23

Mechanistic Insights Into Small Molecule (Amine-Boranes, Hydrogen, Methane, Formic Acid Carbon dioxide) Activation Using Electrophilic Ru(II)-Complexes

Kumar, Rahul January 2016 (has links) (PDF)
Current fossil fuels (Coal and Petroleum) based economy is not sustainable in the long run because of its dwindling resources, and increasing concerns of climate change due to excessive carbon dioxide (CO2) emission. To mitigate CO2 emission and climate change, scientists across the world have been looking for clean and sustainable energy sources. Among them hydrogen gas (H2) could be more promising because it is the most clean fuel and can be produced from cheap source (water) which is renewable and abundant. Nevertheless, the bottleneck for hydrogen economy is lying in the cost of hydrogen production from water. Still there are no any efficient systems developed which can deliver hydrogen from water in economically viable way. Meanwhile, recent research on old molecule ammonia-borane (H3N•BH3, AB) as hydrogen source has increased the hope towards the hydrogen economy, however, catalytic recycling (or efficient regeneration) of AB from the dehydrogenated product polyborazylene (PB or BNHx) is the biggest hurdle which prevents use of AB as practical hydrogen storage material. Therefore, it is imperative to understand the dehydrogenation pathways of ammonia-borane (or related amine-boranes) which lead to polymeric or oligomeric product(s). On the other hand, methane (CH4) is abundant (mostly untamed) but cleaner fuel than its higher hydrocarbon analogs. To develop highly efficient catalytic systems to transform CH4 into methanol (gas to liquid) is of paramount importance in the field of catalysis and it could revolutionize the petrochemical industry. Therefore, to activate CH4, it is crucial to understand its binding interaction with metal center of a molecular catalyst under homogenous condition. However, these interactions are too weak and hence σ–methane complexes are very elusive. In this context, σ-H2 and σ-borane complexes bear some similarities in σ-bond coordination (and four coordinated boranes are isoelectronic with methane) could be considered as good models to study σ-methane complexes. Studying the H−H and B−H bond activation in H2 and amine-boranes, respectively, would provide fundamental insights into methane activation and its subsequent functionalization. Moreover, the proposed methanol economy by Nobel laureate George Olah seems more promising because methanol can be produced from CH4 (CO2 as well). This in turn will gradually reduce the amount of two powerful greenhouse gases from the earth’s atmosphere. Thus, efficient and economic production of methanol from CH4 and CO2 is one of most challenging problems of today in the field of catalysis and regarded as the holy grails. Furthermore, very recently formic acid (HCOOH) is envisaged as a promising reversible hydrogen storage material because it releases H2 and CO2 in the presence of a suitable and efficient catalyst or vice versa under ambient conditions. Objective of the research work: Taking the account of the above facts, the research work in this thesis is mostly confined to utilize electrophilic Ru(II)-complexes for activation of small molecules such as ammonia-borane (H3N•BH3) [and related amine-borane (Me2HN•BH3)], hydrogen (H2), methane (CH4), formic acid (HCOOH) and carbon dioxide (CO2) and investigation of their mechanistic pathways using NMR spectroscopy under homogeneous conditions. Though these molecules are small, they have huge impacts on chemical industries (energy sector and chemical synthesis: drugs/natural products) and environment [CO2 and CH4 are potent green house gases] as well. However, they are relatively inert molecules, especially CH4 and CO2, and impose very tough challenges to activate and functionalize them into useful products under ambient conditions. The partial oxidation of the strong C−H bond in CH4 for its transformation into methanol under relatively mild condition using an organometallic catalyst is considered as a holy grail in the field of catalysis which is mentioned earlier. More importantly, to develop better and highly efficient homogeneous catalytic systems for the activation of these molecules, it is imperative to understand the mechanistic pathways using well defined homogeneous metal complexes. Thus, an understanding of the interaction of these inert molecules with metal center is obligatory. In this context, discovery of a σ-complex of H2 gave remarkable insights into H−H bond activation pathways and its implications in catalytic hydrogenation reactions. Subsequently, σ-borane complexes of amine-boranes were discovered and found to be relatively more stable because of stronger M−H−B interaction and hence act as good models to study the M−H−C interaction of elusive σ-methane complex. On the other hand, HCOOH, a promising hydrogen storage material and its efficient catalytic dehydrogenation/decarboxylation and CO2 hydrogenation back to HCOOH using well defined homogeneous catalysts could lead to a sustainable energy cycle. Therefore, it is quite significant to understand the mechanistic pathways of formic acid dehydrogenation/decarboxylation and carbon dioxide reduction to formic acid for the development of next generation efficient catalysts. Chapter highlights: Keeping all these in view, we carried out thorough studies on the activation of these small molecules by electrophilic Ru(II)-complexes. This thesis provides useful insights and perspective on the detailed investigation of mechanistic pathways for the activation of small molecules such as H3N•BH3 [and Me2HN•BH3], H2, CH4, HCOOH and CO2 using electrophilic Ru(II)-complexes under homogeneous conditions using NMR spectroscopy. In Chapter 1 we provide brief overview of small molecule activation using organometallic complexes. This chapter presents pertinent and latest results from literature on the significance of small molecule activation. Although there are several small molecules which need our attention, however, we have focused mainly on H3N•BH3 [and Me2HN•BH3], H2, CH4, HCOOH and CO2. In Chapter 2, we present detailed investigation of mechanistic pathways of B−H bond activation of H3N•BH3 and Me2HN•BH3 using electrophilic [RuCl(dppe)2][OTf] complex using NMR spectroscopy as a model for methane activation. In these reactions, using variable temperature (VT) 1H, 31P{1H} and 11B NMR spectroscopy we detected several intermediates en route to the final products at room temperature including a σ-borane complex. On the basis of elaborative studies using NMR spectroscopy, we have established the complete mechanistic pathways for dehydrogenation of H3N•BH3/Me2HN•BH3 and formation of B−H bond activated/cleaved products along with several Ru-hydride and Ru-(dihydrogen) complexes. Keeping the B−H bond activation of amine-boranes in view as a model for methane activation, we attempted to activate methane using [RuCl(dppe)2][OTf] complex. In addition, [Ru(OTf)(dppe)2][OTf] complex having better electrophilicity than [RuCl(dppe)2][OTf], was synthesized and characterized. The [Ru(OTf)(dppe)2][OTf] complex has highly labile triflate bound to Ru-metal and therefore its reactivity studies toward H2 and CH4 were carried out where H2 activation was successfully achieved, however, no any spectroscopic evidence was found for C−H bond activation of CH4. The Chapter 3 describes the synthesis and characterization of several Ru-Me complexes such as trans-[Ru(Me)Cl(dppe)2], [Ru(Me)(dppe)2][OTf], trans-[Ru(Me)(L)(dppe)2][OTf] (L = CH3CN, tBuNC, tBuCN, H2) with an aim to trap corresponding σ-methane intermediate at low temperature. However, interestingly, we observed spontaneous but gradual methane elimination and orthometalation of [Ru(Me)(dppe)2][OTf] complex at room temperature. We thoroughly investigated mechanistic details of methane elimination and orthometalation of [Ru(Me)(dppe)2][OTf] using VT NMR spectroscopy, NOESY and DFT calculations. Furthermore, H2 activation was confirmed unambiguously by [Ru(Me)(dppe)2][OTf] and Ru-orthometalated complexes using NMR spectroscopy under ambient conditions. An effort was also made to activate methane using Ruorthometalated complex in pressurized condition of methane in a pressure stable NMR tube. Moreover, preliminary studies on protonation reaction of [Ru(Me)(dppe)2][OTf] using VT NMR spectroscopy to trap σ-methane at low temperature was carried out which provided us some useful information on dynamics between proton and Ru-Me species. The Chapter 4 provides useful insights into the mechanistic pathways of dehydrogenation/decarboxylation of formic acid using [RuCl(dppe)2][OTf]. Catalytic dehydrogenation of HCOOH using [RuCl(dppe)2][OTf] was observed in presence of Hunig base (proton sponge). In addition, a complex [Ru(CF3COO)(dppe)2][OTf] was synthesized and characterized using NMR spectroscopy, and found to readily dehydrogenate HCOOH. Moreover, preliminary results on transfer hydrogenation of CO2 into formamide using [RuCl(dppe)2][OTf] as a precatalyst and tert-butyl amine-borane (tBuH2N•BH3) as secondary hydrogen source was confirmed using 13C NMR spectroscopy. The mechanisms were proposed for HCOOH dehydrogenation and transfer hydrogenation of CO2 based on our NMR spectroscopic studies. Furthermore, a few test reactions of transfer hydrogenation of selected alkenes such as cyclooctene, acrylonitrile, 1-hexene using [RuCl(dppe)2][OTf] as pre-catalyst and tert-butyl amine-borane (tBuH2N•BH3) as secondary hydrogen source showed quantitative conversion to hydrogenated products.
24

Développement et caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque

Yvon-Bessette, André 09 1900 (has links)
Ce projet de recherche mené en collaboration industrielle avec St-Jean Photochimie Inc. / PCAS Canada vise le développement et la caractérisation de dérivés dipyrrométhène pour des applications dans le domaine du photovoltaïque. La quête du récoltage des photons se situant dans le proche-infrarouge a été au centre des modifications structurales explorées afin d’augmenter l’efficacité de conversion des cellules solaires de type organique et à pigments photosensibles. Trois familles de composés intégrant le motif dipyrrométhène ont été synthétisées et caractérisées du point de vue spectroscopique, électrochimique, structural ainsi que par modélisation moléculaire afin d’établir des relations structures-propriétés. La première famille comporte six azadipyrrométhènes au potentiel de coordination tétradentate sur des centres métalliques. Le développement d’une nouvelle voie synthétique asymétrique combinée à l’utilisation d’une voie symétrique classique ont permis d’obtenir l’ensemble des combinaisons de substituants possibles sur les aryles proximaux incluant les noyaux 2-hydroxyphényle, 2-méthoxyphényle et 2- pyridyle. La modulation du maximum d’absorption dans le rouge a pu être faite entre 598 et 619 nm. De même, la présence de groupements méthoxyle ou hydroxyle augmente l’absorption dans le violet (~410 nm) tel que démontré par modélisation. La caractérisation électrochimique a montré que les dérivés tétradentates étaient en général moins stables aux processus redox que leur contre-parti bidentate. La deuxième famille comporte dix dérivés BODIPY fusionnés de façon asymétrique en position [b]. L’aryle proximal a été modifié de façon systématique afin de mieux comprendre l’impact des substituents riches en électron et de la fusion de cycles aromatiques. De plus, ces dérivés ont été mis en relation avec une vaste série de composés analogues. Les résultats empiriques ont montré que les propriétés optoélectroniques de la plateforme sont régies par le degré de communication électronique entre l’aryle proximal, le pyrrole sur lequel il est attaché et le noyau indolique adjacent à ce dernier. Les maximums d’absorption dans le rouge sont modulables entre 547 et 628 nm et la fluorescence des composés se situe dans le proche- infrarouge. L’un des composé s’est révélé souhaitable pour une utilisation en photovoltaïque ainsi qu’à titre de sonde à pH. La troisième famille comporte cinq complexes neutres de RuII basés sur des polypyridines et portant un ligand azadipyrrométhène cyclométalé. Les composés ont montré une forte absorption de photons dans la région de 600 à 800 nm (rouge à proche- infrarouge) et qui a pu être étendue au-delà de 1100 nm dans le cas des dérivés portant un ligand terpyridine. L’analyse des propriétés optoélectroniques de façon empirique et théorique a montré un impact significatif de la cyclométalation et ouvert la voie pour leur étude en tant que photosensibilisateurs en OPV et en DSSC. La capacité d’un des complexes à photo-injecter un électron dans la bande de conduction du semi-conducteur TiO2 a été démontré en collaboration avec le groupe du Pr Gerald J. Meyer à University of North Carolina at Chapel Hill, premier pas vers une utilisation dans les cellules solaires à pigments photosensibles. La stabilité des complexes en solution s’est toutefois avérée problématique et des pistes de solutions sont suggérées basées sur les connaissances acquises dans le cadre de cette thèse. / This research project carried out in industrial collaboration with Saint-Jean Photochemicals Inc. / PCAS Canada aims at the development and characterization of dipyrromethene derivatives for photovoltaic applications. The quest for harvesting near- infrared photons was the central focus and various structural modifications were explored to improve the power conversion efficiency of organic and dye-sensitized solar cells (OPV and DSSC, respectively). Three families of chromophores which embedded a dipyrromethene motif were synthesized and characterized through spectroscopy, electrochemistry, X-ray diffraction and computationnal modelization in order to establish their structure-properties relationship. The first family includes six azadipyrromethenes with potential for tetradentate coordination on metallic centers. The development of a new asymmetric synthetic route together with the classical symmetric one allowed access to all possible combinations of derivatives including 2-hydroxyphenyl, 2-methoxyphenyl and 2-pyridyl substituents in the proximal position of the dipyrromethene. Modulation of the absorption maxima in the red ranged between 598 and 619 nm. Also, having methoxy or hydroxy substituents provided an increase of the violet absorption (~410 nm) as established by modelization. Electrochemical characterization showed that the tetradentate azadipyrromethenes were generally less stable towards redox processes as compared to their bidentate counter- parts. The second family includes ten asymmetric benzo[b]-fused BODIPYs where the proximal aryl was systematically modified in order to assess the impact of electron-rich substituents and fused aromatic cycles. The derivatives were further compared to a wide series of related BODIPYs. Empirical results showed the optoelectronic properties are dictated by the extend of electronic communication between the proximal aryl, the pyrrol to which it is attached and the adjacent indolic moiety. Absorption maxima in the red were modulated between 547 nm and 628 nm and the fluorescence was in the near-infrared. One compound proved to be a potential candidate for photovoltaic and pH probe applications. The third family includes five neutral RuII polypyridine complexes bearing a cyclometalated azadipyrromethene ligand. The compounds exhibit strong light absorption in the 600 – 800 nm range (red to near-infrared) that tails beyond 1100 nm in the terpyridine-based adducts. Analysis of the optoelectronic properties showed a significant impact of this novel cyclometalation strategy for dipyrromethene derivatives and paved the way for further incorporation of the resulting complexes as photosensitizers in OPV and DSSC. In collaboration with the group of Pr Gerald J. Meyer at the University of North Carolina at Chapel Hill, the capacity of one compound to photo-inject its electron into the conduction band of the TiO2 semiconductor was established, a first step towards their use in dye-sensitized solar cells. The structural instability in solution of the complexes hindered their full potential for photovoltaic applications and suggestions to improve them are proposed based on the knowledge acquired in the course of this thesis.

Page generated in 0.0307 seconds