Spelling suggestions: "subject:"rulebased machine translation"" "subject:"rulesbased machine translation""
1 |
Rule-based Machine Translation in Limited Domain for PDAsChiang, Shin-Chian 10 September 2009 (has links)
In this thesis, we implement a rule-based machine ranslation (MT) system for Personal Digital Assistants (PDAs). Rule-based MT system has three modules in general: analysis, transfer and generation. Grammars used in our system are lexicalized tree automata-based grammar (LTA) and synchronous lexicalized tree adjoining grammar (SLTAG). LTA is used for analysis, and SLTAG is used for transfer and generation. We adjust developed parser to PDAs as a parser in the analysis module. The SLTAG parser in the transfer module would search possible source side of SLTAG in source parse tree. Then, growing target parse tree and scoring each hypothesis is based on language model and rule probability. To avoid too much estimation, generation step would prune some hypotheses under threshold. Compared with other rule-based MT systems, we can build rules automatically and design a flexible rule type. SLTAG parser is coded specially for the rule type. In experiments, Chinese-English BTEC is our training and test data. We can get 17% BLEU score for the test data.
|
2 |
Translation of keywords between English and Swedish / Översättning av nyckelord mellan engelska och svenskaAhmady, Tobias, Klein Rosmar, Sander January 2014 (has links)
In this project, we have investigated how to perform rule-based machine translation of sets of keywords between two languages. The goal was to translate an input set, which contains one or more keywords in a source language, to a corresponding set of keywords, with the same number of elements, in the target language. However, some words in the source language may have several senses and may be translated to several, or no, words in the target language. If ambiguous translations occur, the best translation of the keyword should be chosen with respect to the context. In traditional machine translation, a word's context is determined by a phrase or sentences where the word occurs. In this project, the set of keywords represents the context. By investigating traditional approaches to machine translation (MT), we designed and described models for the specific purpose of keyword- translation. We have proposed a solution, based on direct translation for translating keywords between English and Swedish. In the proposed solu- tion, we also introduced a simple graph-based model for solving ambigu- ous translations. / I detta projekt har vi undersökt hur man utför regelbaserad maskinöver- sättning av nyckelord mellan två språk. Målet var att översätta en given mängd med ett eller flera nyckelord på ett källspråk till en motsvarande, lika stor mängd nyckelord på målspråket. Vissa ord i källspråket kan dock ha flera betydelser och kan översättas till flera, eller inga, ord på målsprå- ket. Om tvetydiga översättningar uppstår ska nyckelordets bästa över- sättning väljas med hänsyn till sammanhanget. I traditionell maskinö- versättning bestäms ett ords sammanhang av frasen eller meningen som det befinner sig i. I det här projektet representerar den givna mängden nyckelord sammanhanget. Genom att undersöka traditionella tillvägagångssätt för maskinöversätt- ning har vi designat och beskrivit modeller specifikt för översättning av nyckelord. Vi har presenterat en direkt maskinöversättningslösning av nyckelord mellan engelska och svenska där vi introducerat en enkel graf- baserad modell för tvetydiga översättningar.
|
Page generated in 0.1114 seconds