• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 7
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 123
  • 40
  • 38
  • 27
  • 27
  • 26
  • 23
  • 20
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Ventilering av brännbara gaser vid batteribränder

Gahm, Fredrik January 2021 (has links)
The use of lithium-ion batteries is something that is becoming more common in today’s society. They are found in a variety of electronic equipment such as mobile phones, laptops and tools. Several incidents have been reported due to lithium-ion batteries ending up in a state called thermal runaway. This in combination with the increasing demands for environmentally friendly and sustainable energy in the form of e.g. wind turbines and solar panels, can therefore lead to unforeseen consequences. Residual energy from wind or solar power can be stored in an energy storage, often a battery system of several interconnected lithium-ion batteries. In case of an incident in these storages where a large quantity of these batteries is located, there is a risk that an explosion will occur. This further leads to the interest if it’s possible to prevent an explosion with the help of mechanical ventilation.  The purpose of this report has been to investigate the reasons why these batteries are being able to cause an explosion, what gases are emitted in the event of a thermal runaway and how explosive they are. With the results given it’s possible to then perform calculations on ventilation capacity needed to maintain a non-explosive atmosphere. This was carried out through a literature study of currently available research combined with information from various authorities, hand calculations and calculations in Excel.  With the results of the literature study, it can be stated that the battery cell consisting of the cathode material lithium-nickel-manganese-cobalt oxide (NMC) is most reactive. The most common gases emitted from these cells during thermal runaway are hydrogen, carbon monoxide, carbon dioxide, methane, ethylene and ethane. These gases are also the most common gases during thermal runaway when the battery consists of a different cathode material, but the distribution may look different. All of these gases, with the exception of carbon dioxide, are flammable and can contribute to an explosive atmosphere.  Three different scenarios are developed where thermal runaway is assumed to take place at a battery cell inside battery storages of different sizes: two container-based energy storage and one battery storage for home use located in a garage space. In these respective scenarios, a certain number of cells are assumed to be in thermal runaway. The lower flammability limit for the ventilated gas mixture is determined to 8,53% based on the amount of emitted gas and the distribution of it due to thermal runaway. With the knowledge of the lower flammability limit of the emitted gas mixture, as well as other available data from each scenario, the desired capacity for ventilation is calculated at 0,23 m3/s for the two container-based battery storages and at 0,035 m3/s for the battery storage located in the garage space. If this capacity of the ventilation is present when thermal runaway occurs, it means that the concentration of combustible gases should remain below the lower flammability limit. It is worth noting that these calculations were performed to some extent based on assumptions and may therefore be judged more as approximate rather than exact.  The conclusions drawn by the performed calculations are that mechanical ventilation is a potential alternative to ensure that the atmosphere in a battery storage doesn’t become explosive if a thermal runaway occurs in the battery cells.
92

THE THERMAL SAFETY UNDERSTANDING OF MXENE ANODES IN LITHIUM-ION BATTERIES

Lirong Cai (9174149) 29 July 2020 (has links)
<p>Rechargeable lithium ion batteries (LIBs) are widely used in various daily life applications including electronic portable devices, cell phones, military applications, and electric vehicles throughout the world. The demand for building a safer and higher volumetric/gravimetric energy density LIBs has increased exponentially for electronic devices and electric vehicles. With the high energy density and longer cycle life, the LIBs are the most prominent energy storage system for electric vehicles. Researchers are further exploring for new materials with a high specific capacity, the MXene has been a promising new anode material for LIBs. The typical MXene material Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> has 447mAh/g theoretical capacity, which is higher than traditional graphite (372 mAh/g for LiC<sub>6</sub>) based anode.</p> <p>Though LIBs are used in most of the portable energy storage devices, LIBs are still having thermal runaway safety concern, which is caused by three main reasons: mechanical, electrical, and thermal abuse. The thermal runaway is caused by the initiation of solid electrolyte interface (SEI) degradation above 80 °C on the anode surface, generating exothermic heat, and further increasing battery temperature. The SEI is a thin layer formed on anode due to electrolyte decomposition during first few charging cycles. Its degradation at low temperature generates heat inside the LIBs and triggers the thermal runaway. The thermal runaway follows SEI degradation, electrolyte reactions, polypropylene separator melting, cathode decomposition and finally leads to combustion. The thermal runaway mechanism of graphite, which is the most common and commercialized anode material of LIBs, has been studied for years. However, the thermal safety aspects of the new MXene material has not been investigated yet. </p> <p>In this thesis, we primarily used differential scanning calorimetry (DSC) and specially designed multi module calorimetry (MMC) to measure exothermic and endothermic heat generated at <a>Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> </a>anode, associated with multiple chemical reactions as the temperature increases. The <i>in-situ</i> MMC technique is employed to study the interactions and chemical reactions of all the components (separator, electrolyte, cathode and MXene anode) in the coin cell for the first time, while the <i>ex-situ</i> DSC is used to investigate the reactions happened on anode side, including electrolyte, PVDF binder, MXene, SEI and intercalated Li. Along with other <a>complementary </a>instruments and methods, the morphological, structural and compositional studies are carried out using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurement and electrochemical measurement to support the thermal analysis. The electrochemical and thermal runaway mechanism of conventional graphitic anode is studied and used for comparison with MXene<sub> </sub>anodes.</p> <p>The Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> thermal runaway is triggered by SEI decomposition around 120 °C analogous to conventional graphite. The thermal behavior of Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> anode is highly dependent on electrode material, surface area, lithiation states, surface morphology, structure and surface-terminating functional groups on Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub>, which provides more active lithium sites for exothermic reactions with the electrolyte. Especially the terminal groups (-OH, -F, =O, etc.) from the etching process affect the lithium ion intercalation and thermal runaway mechanism. With annealing treatment, the surface-terminating functional groups are modified and can achieve less exothermic heat release. By normalizing the total heat generation by specific capacities of the anode materials, it is observed that Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> (2.68 J/mAh) generates slightly less exothermic heat than graphite (2.72 J/mAh) indicating slightly safer nature of Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> anode. The <i>in-situ</i> thermal analysis results on the Ti<sub>3</sub>C<sub>2</sub>T<sub>z</sub> half-cell exhibited less total heat generation per mass (1.56 kJ/g) compared to graphite (1.59 kJ/g) half-cell. </p><br>
93

Ignition and Burning Behavior of Modern Fire Hazards: Firebrand Induced Ignition and Thermal Runaway of Lithium-Ion Batteries

Kwon, Byoungchul 26 May 2023 (has links)
No description available.
94

PHYSICS BASED DEGRADATION ANALYTICS IN ENERGY STORAGE

Venkatesh Kabra (10531817) 04 December 2023 (has links)
<p dir="ltr">Li-ion batteries are ubiquitous in today’s world with portable electronics, EVs making inroads into daily lives, and electric aircraft at the cusp of becoming reality. These and many more applications revolutionize the world with improvements in batteries at scales from materials, manufacturing, electrode architectures, cell design, and protocols. The various challenges associated with the current generation of batteries include the fast-charging capabilities, economic return of the longevity of the battery, and thermal safety characteristics. The aging and degradation of LIBs appears to be a key pain point particularly when exposed to harsh operating temperature and fast charging conditions. LIBs undergo aging due to numerous chemical and physical degradation processes throughout their lifetime owing to their operation. These challenges are exacerbated by the presence of stringent operating conditions including extreme fast charging, and sub-zero temperature resulting in severe degradation and short cycle life. The LIBs also face challenges in their thermal stability characteristics, failing catastrophically when exposed to high temperature or mechanical abuse conditions. The onset and intensity of these thermal runaway behaviors are further modified when batteries undergo varied aging leading to increased heat and gas generation potentially causing fire or explosions. Overall, a comprehensive characterization to delineate the interconnected role and implications of operating extremes and electrode design on electrochemical performance, cell aging, and thermal runaway behavior is critical for better batteries. </p><p dir="ltr">To this end, the role of electrode microstructure in mitigating lithium plating behavior under various operating conditions, including extreme fast charging has been examined. Further, these multi-length scale characteristics of the electrode microstructure are explored via data-driven approaches to study the complex interaction of transport and kinetic limitations on the microstructure designs. A third study is undertaken for in-operando characterization of the LIB degradation, probing the multi-length scale degradation using pulse voltammetry. Here an accurate degradation descriptors dataset is identified and accurately parametrized, throughout its cycling lifespan. These aging behaviors are translated to physio-chemical degradation mechanisms via a reduced-order coupled electrochemical-thermal-aging interactions model. Lastly, the implication of aging behavior on thermal-safety interactions is delineated. Overall the dissertation is focused on developing a fundamental understanding of the LIB performance, degradation, and safety interactions.</p>
95

Investigation and Application of Safety Parameters for Lithium-ion Battery Systems / Undersökning och tillämpning av säkerhetsparametrar för litiumjonbatterisystem

Relefors, Axel January 2020 (has links)
The Swedish Armed Forces are investigating high-risk applications where lithium-ion batteries (LIB) can replace traditional lead-acid batteries. Understanding the potential safety risks and evaluating a battery's instability is crucial for military applications. This report aimed to identify critical safety parameters (temperature, potential, and impedance) in commercial batteries with NMC and LFP electrode chemistries, and to investigate how surrounding cells are affected when a battery suffers from thermal runaway (TR) in a battery module developed by FOI. Accelerated rate calorimetry (ARC) experiments on NMC-based Samsung SDI INR21700-40T and INR21700-50E and LFP-based A123 Systems ANR26650m1-B batteries were conducted to identify critical onset conditions of TR. ARC experiments were conducted with continuous electrochemical impedance spectroscopy (EIS) measurements to correlate thermal behavior with electrochemical changes in the cell impedance and voltage. The NMC-based batteries showed a distinct endothermic reaction between 116 °C and 121 °C, an onset temperature of exothermic self-heating at around 120 °C, which progressed to an explosive decomposition at about 170 °C and resulted in an adiabatic temperature rise of 250 °C to 290 °C. A significant increase in the cell’s impedance at around 100 °C indicated that the current interrupt device (CID) was triggered due to gas formation and critical pressure build-up within the cell. The LFP-based battery demonstrated improved thermal stability during ARC measurements and did not suffer from TR when heated to 300 °C. Thermal runaway propagation experiments were conducted in a battery module developed by FOI. The identified onset temperatures and electrochemical markers were then used to evaluate the stability of the module cells. Cell temperature increases between 16 °C and 48 °C was observed in cells directly adjacent to the trigger cell. Cells further from the trigger cell experienced uniform temperature increases of between 8 °C and 30 °C. EIS measurements of the module cells revealed no significant changes in their impedance spectra. The insulating polymer wrap around each cell was found to be crucial in preventing TR propagation. TR propagated from cell-to-cell in the module when the insulating wraps were removed, and cells were in direct contact with the thermally conductive heat sink. / Försvarsmakten undersöker högriskapplikationer där litiumjonbatterier kan ersätta traditionella blysyrabatterier. Att förstå säkerhetsrisker och utvärdera ett batteris instabilitet är särskilt viktigt för militära tillämpningar. Denna rapport syftar till att identifiera kritiska säkerhetsparametrar (temperatur, spänning och impedans) för kommersiella batterier med NMC- och LFP-elektrodkemier samt undersöka hur omkringliggande celler påverkas när ett batteri termiskt rusar (TR) i en batterimodul utvecklad av FOI. ARC-experiment genomfördes på NMC-baserad Samsung SDI INR21700-40T och INR21700-50E och A123 Systems ANR26650m1-B batterier för att karakterisera förloppet av termisk rusning (TR). ARC-experiment utfördes med kontinuerliga elektrokemisk impedansspektroskopi (EIS) för att korrelera termiskt beteende med elektrokemiska förändringar i cellimpedansen och spänningen. Det NMC-baserade batterierna uppvisade en tydlig endotermisk reaktion mellan 116 °C och 121 °C, exotermiska reaktioner påbörjades vid 120 °C och ledde till explosiv termisk rusning vid cirka 170 °C, vilket gav upphov till en adiabatisk temperaturökning på 250 °C till 290 °C. En signifikant ökning av cellens impedans vid cirka 100 °C indikerade att den inre säkerhetsventilen utlöstes på grund av gasbildning och kritisk tryckuppbyggnad i cellen. Det LFP-baserade batteriet visade förbättrad termisk stabilitet under ARC-mätningar och drabbades inte av TR vid uppvärmning till 300 °C. Termiska rusningsförsök genomfördes på en batterimodul utvecklad av FOI. De identifierade starttemperaturerna och elektrokemiska markörerna användes för att utvärdera modulcellernas stabilitet. Celltemperaturökningar mellan 16 °C och 48 °C observerades i celler direkt intill triggcellen. Celler längre från triggcellen upplevde likformiga temperaturökningar mellan 8 °C och 30 °C. EIS-mätningar av modulcellerna avslöjade inga signifikanta förändringar i deras impedansspektra. Det isolerande polymeromslaget runt varje cell var avgörande för att förhindra propagering av termisk rusning i modulen. Termisk rusning propagerade från cell till cell i modulen när de isolerande omslagen togs bort och cellerna var i direkt kontakt med den värmeledande kylflänsen.
96

Factors that drive children from their homes to the streets : Bulawayo suburban experience

Ncube, Sitshengisiwe 03 1900 (has links)
This research study employs explorative and descriptive qualitative research conducted in a naturalistic environment to identify factors that drive children from their homes to the streets of Bulawayo city suburban in Zimbabwe. The research study answers the question: How do children`s experiences drive them from their homes and why do they decide to live on the streets of Bulawayo city centre? Literature search was conducted after data collection to confirm findings. Data collection was conducted at Thuthuka Street Children`s project where an increase in the number of registered street children has been observed. Purposive sample selection of street children was conducted. Selection criteria was based on the participant being registered with Thuthuka Street Children`s Project, for one year being on and off the streets and volunteer to participate. Ethical consideration such as fairness justice and honest were observed. Soundness to establish trustworthiness rather than validity, the following alternative constructs were applied, credibility, transferability, dependability, conformability and authenticity. Focus group discussions using a guide with open-ended questions were conducted to collect data from 12 street children, which was then analysed by coding into themes, notably forms of abuse such as emotional, physical, and sexual and neglect, poverty, deviant behaviour and future plans. Children went onto the streets because they suffered abuse, and/or wanted freedom without parental dominance and to acquire fast riches in the streets. Based on the conclusions, the research makes recommendations from the participants and the researcher to policymakers, non-governmental organisations, parents and social workers, to address this deep-seated problem. / Health Studies / M.A. (Public Health)
97

Factors that drive children from their homes to the streets : Bulawayo suburban experience

Ncube, Sitshengisiwe 03 1900 (has links)
This research study employs explorative and descriptive qualitative research conducted in a naturalistic environment to identify factors that drive children from their homes to the streets of Bulawayo city suburban in Zimbabwe. The research study answers the question: How do children`s experiences drive them from their homes and why do they decide to live on the streets of Bulawayo city centre? Literature search was conducted after data collection to confirm findings. Data collection was conducted at Thuthuka Street Children`s project where an increase in the number of registered street children has been observed. Purposive sample selection of street children was conducted. Selection criteria was based on the participant being registered with Thuthuka Street Children`s Project, for one year being on and off the streets and volunteer to participate. Ethical consideration such as fairness justice and honest were observed. Soundness to establish trustworthiness rather than validity, the following alternative constructs were applied, credibility, transferability, dependability, conformability and authenticity. Focus group discussions using a guide with open-ended questions were conducted to collect data from 12 street children, which was then analysed by coding into themes, notably forms of abuse such as emotional, physical, and sexual and neglect, poverty, deviant behaviour and future plans. Children went onto the streets because they suffered abuse, and/or wanted freedom without parental dominance and to acquire fast riches in the streets. Based on the conclusions, the research makes recommendations from the participants and the researcher to policymakers, non-governmental organisations, parents and social workers, to address this deep-seated problem. / Health Studies / M.A. (Public Health)
98

Therapeutic techniques for treatment of adolescents with rebellious behaviour

Mathye, Lethabo Violet 25 August 2009 (has links)
This study focuses on the therapeutic interventions by mental health practitioners when faced with rebellious youths. Rebelliousness refers to the act of defying lawful authority or a resistant way of relating to authority or convention. It is manifested in, amongst others, withdrawal, deviance, delinquency, antisocial behaviour, and suicide. To date there are no interventions for rebellious youths per sé. Rebellious youths are often treated with traditional strategies which are often ineffective and show little promise for eliminating rebellious behaviour. Research has revealed that teen problem behaviours stem from "life-problems" such as psychosocial stressors. Therefore treating the adolescent for substance abuse, for example, is treating him/her for the wrong reasons. It is no surprise that many adolescents who have undergone intervention programmes for specific behaviour problems relapse soon after they are released from the programmes. The study focuses on integrating different strategies in order to combat rebelliousness in adolescence and beyond. This holistic approach argues that all treatments share certain curative processes. Therefore each treatment works best when it is combined with other aspects of treatment. For this reason, individual, family and group therapy were combined together with school strategies. The results of this study indicate that combining procedures that are designed to improve problematic behaviour in teenagers are viable forms of treatment. / Educational Studies / D.Ed.(Psychology of Education)
99

Street children in South Africa : working towards socio-educational solutions

Anirudhra, Kamraj 11 1900 (has links)
The aim of this investigation was threefold : to determine origins and perceptions of the street child problem nationally and internationally ; to explore the way in which children experience life in the streets ; and to devise strategies to enable these children to develop optimally. Literature indicates that the street child phenomenon is a global issue that presents many challenges. It is a socio-educational problem precipitated by multi-factorial events in the home, community and by children's personality attributes. Street children experience rejection, suffering, shame and anxiety. Deprivation of an environment conducive to positive development leads to maladjustment, anti-social behaviour and marginalisation. The empirical research was undertaken by means of semi-structured interviews conducted among fourteen children of the Khayalethu shelter and by administering questionnaires in the community of Port Shepstone. The findings culminate in recommendations for suitable assistance programmes and strategies to handle the problem in South Africa. / Educational Studies / M.Ed.(Socio-Education)
100

Power-to-gas : développement d’un réacteur catalytique pour la production de méthane de synthèse / Power-to-gas : development of a catalytic methanation reactor

Fache, Axel 12 February 2019 (has links)
Un frein majeur au développement des énergies renouvelables à finalité électrogène réside dans l’inadéquation entre les moments de forte disponibilité des ressources, et les moments de forte demande de la part des consommateurs. Un élément de solution éventuel consisterait à utiliser l’énergie électrique excédentaire, en périodes de surproduction, pour produire du méthane de synthèse (power-to-gas). Cette approche présente l’avantage d’autoriser un lissage à l’échelle des saisons, car le méthane peut être stocké, transporté et utilisé facilement avec les systèmes existants. La réaction de méthanation CO_2+4.H_2⇄CH_4+2.H_2 O, étape clé de la chaine de power-to-gas, peut être réalisée dans un réacteur catalytique à lit fixe refroidi par la paroi. La conception d’un tel réacteur présente des difficultés d’ordre théorique et technologique. Du fait de la forte exothermicité de la réaction, cette dernière tend à être instable (emballement vs. extinction). De plus, la puissance électrique excédentaire varie au cours du temps : le régime de fonctionnement du réacteur (débit de mélange réactif à convertir) doit pouvoir varier en conséquence. L’exigence de fonctionnement dynamique, pour une réaction instable, fait apparaitre des difficultés spécifiques auxquelles ne sont pas confrontés les réacteurs fonctionnant en régime permanent (risque d’emballement transitoire). Dans ce contexte, un projet impliquant le Laboratorie de Thermique, Energétique et Procédés et la start-up industrielle ENOSIS a été mis en place pour contribuer au développement d’un réacteur performant et sûr. Ce projet bénéficie du financement de la région Nouvelle-Aquitaine.Dans la présente thèse, un critère théorique est introduit pour quantifier la marge de sécurité dont bénéficie un réacteur vis-à-vis des instabilités transitoires. Un logiciel est développé pour simuler, au premier ordre, le fonctionnement dynamique d’un réacteur. Cela permet d’illustrer l’optimisation d’un réacteur, en prenant en compte la contrainte de stabilité transitoire. Il est montré que l’utilisation d’un catalyseur dont la dilution est étagée, stratégie connue pour améliorer la sécurité et la performance des réacteurs en fonctionnement permanent, peut se réveler contre-productive en regard de critères transitoires de performance et/ou de sécurité. Une caractéristique clé du fonctionnement intermittent réside dans le temps de démarrage (ou de redémarrage à chaud) de la réaction, lors de l’injection soudaine de réactifs. Aussi, un examen de la durée de (re)démarrage d’un réacteur en fonction de sa température juste avant injection est mené. La relation entre température et vitesse de (re)démarrage se révèle approximativement affine. Dans un second temps, un modèle plus précis est développé et le logiciel correspondant est écrit, afin de distinguer le comportement thermique des grains catalytiques proprement-dits du comportement de grains inertes. Ces derniers, outre leur rôle de diluant, peuvent également présenter des propriétés thermiques dont l’exploitation autoriserait possiblement une stabilisation des transitoires critiques. Aussi, quelques simulations sont lancées sur des configurations de réacteur non-conventionnelles (grains inertes pouvant être chauffés par induction, grains à changement de phase). Les résultats obtenus permettent de mieux appréhender certaines difficultés qui seront à résoudre pour permettre l’utilisation éventuelle de ces technologies disruptives. En complément du travail théorique et numérique, une micro-campagne expérimentale a été menée au sein du Combustion and Catalysis Laboratory de New-York (mise en place d’un dispositif, collecte de premières données en vue d’une validation).En parallèle de ces différents axes de recherche, une solution technologique brevetable (non détaillée dans le présent manuscrit) a également été trouvée. / The development of renewable energy for electricity generation is significantly hindered by the discrepancy between the moments when high amounts of energy are available and the moments when consumers demand most power supply. A prospective solution consists in using electric power surplus to produce synthetic methane, during extra production periods (power-to-gas). This solution would enable to smoothen the electric balance from a season to another, since methane can be easily stored, transported and used in existing devices. The methanation reaction CO_2+4.H_2⇄CH_4+2.H_2 O is a key step in power-to-gas. It can be completed in a fixed-bed wall-cooled reactor. Designing such a reactor leads to theoretical and technological difficulties. Because the reaction is highly exothermic, it tends to be unstable (runaway vs. blow-out). Moreover, power surplus varies over time: the reactor must therefore enable dynamic operation (reactants flow rate variations). Dynamic completion of an unstable reaction leads to specific issues which do not exist for steady-state operating reactors (risk of a transient runaway). In this context, a project involving the Laboratoire de Thermique, Energétique et Procédés and the start-up company ENOSIS has been set up (with the financial support of French region Nouvelle-Aquitaine), to obtain a contribution to the development of a safe and efficient reactor. In the present work, a theoretical criterion is introduced to quantify the safety margin of a reactor towards transient instabilities. A software is developed to perform a simplified simulation of a reactor’s dynamic operation. This simulation tool is used to illustrate the process of optimizing a reactor, taking into account the transient stability constraint. It is shown that using a staggered catalyst dilution – a well known strategy to improve safety and efficiency for steady state operating reactors – can be counter-productive when it comes to transient safety/efficiency criteria. A key characteristic of intermittent operation lies in the start-up time (or warm restart-up time) of the reaction, when reactants are injected sharply. Therefore, we examined the (re)start-up time of a reactor as a function of its temperature just before injection begins. The temperature-(re)start time relation turns out to be nearly linear.Secondly, a more accurate model is developed and the corresponding software is encoded, with the aim of distinguishing the catalytic pellets from the inert pellets, in terms of thermal behavior. Not only do inert pellets play a diluting role, but they can also have specific thermal properties to stabilize critical transient sequences. A few simulations are thus performed on non-conventional reactor configurations (inert grains can be heated by induction, or undergo a phase change). The results provide a better understanding of some difficulties that should be solved before such disruptive technologies could eventually be operational.As a complement to the theoretical and numerical work, a micro experimental campaign is performed in the Combustion and Catalysis Laboratory of New-York (setting-up an experimental device, collecting data for future validation of the simulator).Alongside these lines of research, a patentable technological solution has also been found (not detailed in this manuscript).

Page generated in 0.0299 seconds