• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 9
  • 5
  • Tagged with
  • 40
  • 40
  • 40
  • 19
  • 18
  • 18
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analyse en composantes indépendantes avec une matrice de mélange éparse

Billette, Marc-Olivier 06 1900 (has links)
L'analyse en composantes indépendantes (ACI) est une méthode d'analyse statistique qui consiste à exprimer les données observées (mélanges de sources) en une transformation linéaire de variables latentes (sources) supposées non gaussiennes et mutuellement indépendantes. Dans certaines applications, on suppose que les mélanges de sources peuvent être groupés de façon à ce que ceux appartenant au même groupe soient fonction des mêmes sources. Ceci implique que les coefficients de chacune des colonnes de la matrice de mélange peuvent être regroupés selon ces mêmes groupes et que tous les coefficients de certains de ces groupes soient nuls. En d'autres mots, on suppose que la matrice de mélange est éparse par groupe. Cette hypothèse facilite l'interprétation et améliore la précision du modèle d'ACI. Dans cette optique, nous proposons de résoudre le problème d'ACI avec une matrice de mélange éparse par groupe à l'aide d'une méthode basée sur le LASSO par groupe adaptatif, lequel pénalise la norme 1 des groupes de coefficients avec des poids adaptatifs. Dans ce mémoire, nous soulignons l'utilité de notre méthode lors d'applications en imagerie cérébrale, plus précisément en imagerie par résonance magnétique. Lors de simulations, nous illustrons par un exemple l'efficacité de notre méthode à réduire vers zéro les groupes de coefficients non-significatifs au sein de la matrice de mélange. Nous montrons aussi que la précision de la méthode proposée est supérieure à celle de l'estimateur du maximum de la vraisemblance pénalisée par le LASSO adaptatif dans le cas où la matrice de mélange est éparse par groupe. / Independent component analysis (ICA) is a method of statistical analysis where the main goal is to express the observed data (mixtures) in a linear transformation of latent variables (sources) believed to be non-Gaussian and mutually independent. In some applications, the mixtures can be grouped so that the mixtures belonging to the same group are function of the same sources. This implies that the coefficients of each column of the mixing matrix can be grouped according to these same groups and that all the coefficients of some of these groups are zero. In other words, we suppose that the mixing matrix is sparse per group. This assumption facilitates the interpretation and improves the accuracy of the ICA model. In this context, we propose to solve the problem of ICA with a sparse group mixing matrix by a method based on the adaptive group LASSO. The latter penalizes the 1-norm of the groups of coefficients with adaptive weights. In this thesis, we point out the utility of our method in applications in brain imaging, specifically in magnetic resonance imaging. Through simulations, we illustrate with an example the effectiveness of our method to reduce to zero the non-significant groups of coefficients within the mixing matrix. We also show that the accuracy of the proposed method is greater than the one of the maximum likelihood estimator with an adaptive LASSO penalization in the case where the mixing matrix is sparse per group.
22

Cyclostationary analysis : cycle frequency estimation and source separation / Analyse cyclostationnaire : estimation des fréquences cycliques et séparation de sources

Che Viet, Nhat Anh 28 October 2011 (has links)
Le problème de séparation aveugle de sources a but de retrouver un ensemble des sources signaux statistiquement indépendants à partir seulement d’un ensemble des observations du capteur. Ces observations peuvent être modélisées comme un mélanges linéaires instantané ou convolutifs de sources. Dans cette thèse, les sources signaux sont supposées être cyclostationnaire où leurs fréquences cycles peuvent être connues ou inconnu par avance. Premièrement, nous avons établi des relations entre le spectre, spectre de puissance d’un signal source et leurs composants, puis nous avons proposé deux nouveaux algorithmes pour estimer sa fréquences cycliques. Ensuite, pour la séparation aveugle de sources en mélanges instantanés, nous présentons quatre algorithmes basés sur diagonalisation conjoint approchées orthogonale (ou non-orthogonales) d’une famille des matrices cycliques multiples moment temporel, or l’approche matricielle crayon pour extraire les sources signaux. Nous introduisons aussi et prouver une nouvelle condition identifiabilité pour montrer quel type de sources cyclostationnaires d’entrée peuvent être séparées basées sur des statistiques cyclostationnarité à l’ordre deux. Pour la séparation aveugle de sources en mélanges convolutifs, nous présentons un algorithme en deux étapes basées sur une approche dans le domaine temporel pour récupérer les signaux source. Les simulations numériques sont utilisés dans cette thèse pour démontrer l’efficacité de nos approches proposées, et de comparer les performances avec leurs méthodes précédentes / Blind source separation problem aims to recover a set of statistically independent source signals from a set of sensor observations. These observations can be modeled as an instantaneous or convolutive mixture of the same sources. In this dissertation, the source signals are assumed to be cyclostationary where their cycle frequencies may be known or unknown a priori. First, we establish relations between the spectrum, power spectrum of a source signal and its component, then we propose two novel algorithms to estimate its cycle frequencies. Next, for blind separation of instantaneous mixtures of sources, we present four algorithms based on orthogonal (or non-orthogonal) approximate diagonalization of the multiple cyclic temporal moment matrices, and the matrix pencil approach to extract the source signal. We also introduce and prove a new identifiability condition to show which kind of input cyclostationary sources can be separated based on second-order cyclostationarity statistics. For blind separation of convolutive mixtures of sources signal or blind deconvolution of FIR MIMO systems, we present a two-steps algorithm based on time domain approach for recovering the source signals. Numerical simulations are used throughout this thesis to demonstrate the effectiveness of our proposed approaches, and compare theirs performances with previous methods
23

Séparation de signaux en mélanges convolutifs : contributions à la séparation aveugle de sources parcimonieuses et à la soustraction adaptative des réflexions multiples en sismique / Signal separation in convolutive mixtures : contributions to blind separation of sparse sources and adaptive subtraction of seismic multiples

Batany, Yves-Marie 14 November 2016 (has links)
La séparation de signaux corrélés à partir de leurs combinaisons linéaires est une tâche difficile et possède plusieurs applications en traitement du signal. Nous étudions deux problèmes, à savoir la séparation aveugle de sources parcimonieuses et le filtrage adaptatif des réflexions multiples en acquisition sismique. Un intérêt particulier est porté sur les mélanges convolutifs : pour ces deux problèmes, des filtres à réponses impulsionnelles finies peuvent être estimés afin de récupérer les signaux désirés.Pour les modèles de mélange instantanés et convolutifs, nous donnons les conditions nécessaires et suffisantes pour l'extraction et la séparation exactes de sources parcimonieuses en utilisant la pseudo-norme L0 comme une fonction de contraste. Des équivalences entre l'analyse en composantes parcimonieuses et l'analyse en composantes disjointes sont examinées.Pour la soustraction adaptative des réflexions sismiques, nous discutons les limites des méthodes basées sur l'analyse en composantes indépendantes et nous soulignons l'équivalence avec les méthodes basées sur les normes Lp. Nous examinons de quelle manière les paramètres de régularisation peuvent être plus décisifs pour l'estimation des primaires. Enfin, nous proposons une amélioration de la robustesse de la soustraction adaptative en estimant les filtres adaptatifs directement dans le domaine des curvelets. Les coûts en calcul et en mémoire peuvent être atténués par l'utilisation de la transformée en curvelet discrète et uniforme. / The recovery of correlated signals from their linear combinations is a challenging task and has many applications in signal processing. We focus on two problems that are the blind separation of sparse sources and the adaptive subtraction of multiple events in seismic processing. A special focus is put on convolutive mixtures: for both problems, finite impulse response filters can indeed be estimated for the recovery of the desired signals.For instantaneous and convolutive mixing models, we address the necessary and sufficient conditions for the exact extraction and separation of sparse sources by using the L0 pseudo-norm as a contrast function. Equivalences between sparse component analysis and disjoint component analysis are investigated.For adaptive multiple subtraction, we discuss the limits of methods based on independent component analysis and we highlight equivalence with Lp-norm-based methods. We investigate how other regularization parameters may have more influence on the estimation of the desired primaries. Finally, we propose to improve the robustness of adaptive subtraction by estimating the extracting convolutive filters directly in the curvelet domain. Computation and memory costs are limited by using the uniform discrete curvelet transform.
24

Contribution à la séparation de sources cyclo-stationnaires : application aux signaux de télécommunications, mécaniques et biomécaniques / Contribution to the separation of cyclo-stationary sources : application to telecommunications, mechanical and biomechanical signals

Brahmi, Amine 30 November 2017 (has links)
Dans cette thèse, nous nous sommes attaqués au problème de séparation aveugle de mélanges linéaires de sources ayant des propriétés de cyclo-stationnarité. Trois applications ont été abordées à savoir : télécommunications, vibrations mécaniques et biomécaniques. Dans un premier temps, deux nouvelles méthodes ont été proposées, la première a pour but de séparer aveuglement des sources cyclo-stationnaires partageant une ou plusieurs fréquences cycliques inconnues. Elle combine la diagonalisation conjointe à un nouveau détecteur de points utiles (retard-fréquence cyclique) permettant de composer l’ensemble de matrices de corrélation cyclique devant être diagonalisées conjointement. Quant à la deuxième méthode, elle vise à identifier la matrice de mélange de sources cyclostationnaires de fréquences cycliques inconnues et différentes. L’identification commence par une étape de détection des matrices de rang un, puis décompose en éléments propres le produit de matrices sélectionnées, enfin une méthode de regroupement hiérarchique restitue les colonnes de notre matrice recherchée. Les deux solutions ont été appliquées aux signaux de télécommunications. Dans un second temps, nous avons appliqué d’abord la première méthode proposée sur des signaux mécaniques issus d’un banc de roulements défaillants afin de tester son aptitude à séparer les sources. Ensuite, nous avons proposé une approche qui s’appuie sur l’analyse en composantes parcimonieuses pour séparer les composantes de la force de réaction au sol ayant des propriétés cyclo-stationnaires à l’ordre 1 et 2 / In this thesis, we have tackled the problem of blind separation of linear mixtures of sources with cyclo-stationarity properties. Three applications were studied : telecommunications, mechanical vibrations and biomechanics. First, two new methods have been proposed, the first one aims to blindly separate cyclo-stationary sources sharing one or more unknown cyclic frequencies. It combines the joint diagonalization with a new useful point detector (time lag-cyclic frequency) to compose the set of cyclic correlation matrices to be jointly diagonalized. As for the second method, it aims to identify the mixture matrix of cyclo-stationary sources of unknown and different cyclic frequencies. The identification begins with a step of detecting the matrices of rank one, then the product of selected matrices is decomposed into eigen-elements, and finally a hierarchical regrouping method returns the columns of our sought matrix. Both solutions have been applied to telecommunications signals. In a second step, we first applied the first proposed method on mechanical signals coming from a bank of faulty bearings in order to test its ability to separate the sources. Next, we proposed an approach based on sparse component analysis to separate the components of the ground reaction force with cyclo-stationary properties at order 1 and 2
25

Méthodes de séparation aveugle de sources et application à l'imagerie hyperspectrale en astrophysique / Blind source separation methods and applications to astrophysical hyperspectral data

Boulais, Axel 15 December 2017 (has links)
Ces travaux de thèse concernent le développement de nouvelles méthodes de séparation aveugle de mélanges linéaires instantanés pour des applications à des données hyperspectrales en astrophysique. Nous avons proposé trois approches pour effectuer la séparation des données. Une première contribution est fondée sur l'hybridation de deux méthodes existantes de séparation aveugle de source (SAS) : la méthode SpaceCORR nécessitant une hypothèse de parcimonie et une méthode de factorisation en matrices non négatives (NMF). Nous montrons que l'utilisation des résultats de SpaceCORR pour initialiser la NMF permet d'améliorer les performances des méthodes utilisées seules. Nous avons ensuite proposé une première méthode originale permettant de relâcher la contrainte de parcimonie de SpaceCORR. La méthode MASS (pour \textit{Maximum Angle Source Separation}) est une méthode géométrique basée sur l'extraction de pixels mono-sources pour réaliser la séparation des données. Nous avons également étudié l'hybridation de MASS avec la NMF. Enfin, nous avons proposé une seconde approche permettant de relâcher la contrainte de parcimonie de SpaceCORR. La méthode originale SIBIS (pour \textit{Subspace-Intersection Blind Identification and Separation}) est une méthode géométrique basée sur l'identification de l'intersection de sous-espaces engendrés par des régions de l'image hyperspectrale. Ces intersections permettent, sous une hypothèse faible de parcimonie, de réaliser la séparation des données. L'ensemble des approches proposées dans ces travaux ont été validées par des tests sur données simulées puis appliquées sur données réelles. Les résultats obtenus sur ces données sont très encourageants et sont comparés à ceux obtenus par des méthodes de la littérature. / This thesis deals with the development of new blind separation methods for linear instantaneous mixtures applicable to astrophysical hyperspectral data sets. We propose three approaches to perform data separation. A first contribution is based on hybridization of two existing blind source separation (BSS) methods: the SpaceCORR method, requiring a sparsity assumption, and a non-negative matrix factorization (NMF) method. We show that using SpaceCORR results to initialize the NMF improves the performance of the methods used alone. We then proposed a first original method to relax the sparsity constraint of SpaceCORR. The method called MASS (Maximum Angle Source Separation) is a geometric method based on the extraction of single-source pixels to achieve the separation of data. We also studied the hybridization of MASS with the NMF. Finally, we proposed an approach to relax the sparsity constraint of SpaceCORR. The original method called SIBIS (Subspace-Intersection Blind Identification and Separation) is a geometric method based on the identification of intersections of subspaces generated by regions of the hyperspectral image. Under a sparsity assumption, these intersections allow one to achieve the separation of the data. The approaches proposed in this manuscript have been validated by experimentations on simulated data and then applied to real data. The results obtained on our data are very encouraging and are compared with those obtained by methods from the literature.
26

Algorithmes pour la diagonalisation conjointe de tenseurs sans contrainte unitaire. Application à la séparation MIMO de sources de télécommunications numériques / Algorithms for non-unitary joint diagonalization of tensors. Application to MIMO source separation in digital telecommunications

Maurandi, Victor 30 November 2015 (has links)
Cette thèse développe des méthodes de diagonalisation conjointe de matrices et de tenseurs d’ordre trois, et son application à la séparation MIMO de sources de télécommunications numériques. Après un état, les motivations et objectifs de la thèse sont présentés. Les problèmes de la diagonalisation conjointe et de la séparation de sources sont définis et un lien entre ces deux domaines est établi. Par la suite, plusieurs algorithmes itératifs de type Jacobi reposant sur une paramétrisation LU sont développés. Pour chacun des algorithmes, on propose de déterminer les matrices permettant de diagonaliser l’ensemble considéré par l’optimisation d’un critère inverse. On envisage la minimisation du critère selon deux approches : la première, de manière directe, et la seconde, en supposant que les éléments de l’ensemble considéré sont quasiment diagonaux. En ce qui concerne l’estimation des différents paramètres du problème, deux stratégies sont mises en œuvre : l’une consistant à estimer tous les paramètres indépendamment et l’autre reposant sur l’estimation indépendante de couples de paramètres spécifiquement choisis. Ainsi, nous proposons trois algorithmes pour la diagonalisation conjointe de matrices complexes symétriques ou hermitiennes et deux algorithmes pour la diagonalisation conjointe d’ensembles de tenseurs symétriques ou non-symétriques ou admettant une décomposition INDSCAL. Nous montrons aussi le lien existant entre la diagonalisation conjointe de tenseurs d’ordre trois et la décomposition canonique polyadique d’un tenseur d’ordre quatre, puis nous comparons les algorithmes développés à différentes méthodes de la littérature. Le bon comportement des algorithmes proposés est illustré au moyen de simulations numériques. Puis, ils sont validés dans le cadre de la séparation de sources de télécommunications numériques. / This thesis develops joint diagonalization of matrices and third-order tensors methods for MIMO source separation in the field of digital telecommunications. After a state of the art, the motivations and the objectives are presented. Then the joint diagonalisation and the blind source separation issues are defined and a link between both fields is established. Thereafter, five Jacobi-like iterative algorithms based on an LU parameterization are developed. For each of them, we propose to derive the diagonalization matrix by optimizing an inverse criterion. Two ways are investigated : minimizing the criterion in a direct way or assuming that the elements from the considered set are almost diagonal. Regarding the parameters derivation, two strategies are implemented : one consists in estimating each parameter independently, the other consists in the independent derivation of couple of well-chosen parameters. Hence, we propose three algorithms for the joint diagonalization of symmetric complex matrices or hermitian ones. The first one relies on searching for the roots of the criterion derivative, the second one relies on a minor eigenvector research and the last one relies on a gradient descent method enhanced by computation of the optimal adaptation step. In the framework of joint diagonalization of symmetric, INDSCAL or non symmetric third-order tensors, we have developed two algorithms. For each of them, the parameters derivation is done by computing the roots of the considered criterion derivative. We also show the link between the joint diagonalization of a third-order tensor set and the canonical polyadic decomposition of a fourth-order tensor. We confront both methods through numerical simulations. The good behavior of the proposed algorithms is illustrated by means of computing simulations. Finally, they are applied to the source separation of digital telecommunication signals.
27

Séparation aveugle de mélanges linéaires convolutifs de sources corrélées

Ghennioui, Hicham 19 July 2008 (has links) (PDF)
Dans cette thèse, nous étudions le problème de la séparation aveugle de mélanges linéaires convolutifs sur-déterminés réels ou complexes de sources. Les sources considérées sont réelles ou complexes, déterministes ou aléatoires et dans ce dernier cas statistiquement indépendantes ou corrélées, stationnaires, cyclostationnaires ou non-stationnaires. Nous développons des approches combinant de nouveaux algorithmes de (bloc) diagonalisation conjointe (non unitaires) à de nouveaux détecteurs de points (temps-fréquence ou autres...) particuliers permettant d'élaborer le ou les ensembles de matrices devant être (bloc) diagonalisées conjointement. Les principaux avantages de ces approches sont d'être plus directes en ce se sens qu'elles ne requièrent plus de blanchiment préalable des observations. Elles permettent en outre d'aborder le cas réputé difficile des signaux corrélés. En ce qui concerne les algorithmes de (bloc) diagonalisation conjointe, nous proposons quatre nouveaux algorithmes sans contrainte d'unitarité sur la matrice recherchée. Le premier algorithme est de type algébrique itératif. Il est basé sur l'optimisation d'un critère de type moindres carrés. Les trois autres approches utilisent un schéma d'optimisation de type gradient. Dans un premier temps le calcul du gradient matriciel de la fonction de coût étudiée est approché. Puis dans un second temps le calcul exact est mené et deux nouveaux algorithmes sont proposés : l'un à base de gradient, l'autre à base de gradient relatif. Nous étudions les versions à pas fixe de ces trois algorithmes, puis les versions à pas optimal afin d'accélérer la convergence des algorithmes (le pas est alors recalculé algébriquement à chaque itération en cherchant les racines d'un polynôme d'ordre trois). Un lien avec la diagonalisation conjointe non unitaire est également établi. Ces algorithmes de bloc-diagonalisation conjointe possèdent l'avantage d'être généraux : les matrices de l'ensemble considéré ne sont ni nécessairement réelles, ni à symétrie hermitienne, ni définies positives et le bloc-diagonaliseur conjoint peut être une matrice unitaire ou non-unitaire.
28

Méthodes de séparation aveugle de sources non linéaires, étude du modèle quadratique 2*2

Chaouchi, Chahinez 14 June 2011 (has links) (PDF)
Cette thèse présente des méthodes de séparation aveugle de sources pour un modèle de mélange non-linéaire particulier, le cas quadratique avec auto-termes et termes croisés. Dans la première partie, nous présentons la structure de séparation étudiée qui se décline sous deux formes : étendue ou basique. Les propriétés de ce réseau récurrent sont ensuite analysées (points d'équilibre, stabilité locale). Nous proposons alors deux méthodes de séparation aveugle de sources. La première exploite les cumulants des observations en un bloc placé en amont de la structure récurrente. La deuxième méthode est basée sur une approche par maximum de vraisemblance. Le tout est validé par des simulations numériques.
29

Vers une modélisation dynamique de l'activité cérébrale pour la conception d'interfaces cerveau-machines asynchrones

Gouy-Pailler, Cedric 01 October 2009 (has links) (PDF)
Les Interfaces Cerveau-Machines (ICMs) visent à établir un moyen de communication direct entre le cerveau humain et un système électronique. Si d'importantes avancées ont d'ores et déjà été réalisées depuis une vingtaine d'années dans le domaine, les systèmes existants s'avèrent lents et fastidieux, imposant aux utilisateurs le moment auquel ils doivent envoyer leur commande (systèmes synchrones). Nos travaux se sont concentrés sur le développement de systèmes asynchrones basés sur l'électroencéphalographie (EEG) : ce n'est pas l'ordinateur qui impose le moment de réalisation de la tâche mentale mais le sujet qui a la possibilité d'envoyer sa commande lorsque qu'il le désire. Ceci impose que le système soit capable d'analyser en temps réel l'activité cérébrale du sujet et de reconnaître la tâche mentale recherchée parmi les activités cérébrales mesurées. Nos travaux proposent des méthodes pour les problématiques suivantes : • permettre à l'utilisateur d'envoyer sa commande lorsqu'il le désire ; • augmenter les capacités du système à reconnaître correctement une tâche mentale ; • rendre le système robuste à certains changements qui peuvent s'opérer lors de l'utilisation du système, i.e., adapter le système aux possibles changements du sujet dans la manière dont celui-ci accomplit sa tâche mentale. Les méthodes proposées utilisent de manière conjointe les caractéristiques spatiales (zones cérébrales impliquées), fréquentielles (bandes de fréquences) et temporelles (succession des activations) des tâches mentales afin de pallier le faible rapport signal sur interférences. Différents jeux de données sont utilisés afin de valider ces approches.
30

Méthodes de séparation aveugle de sources et application à la télédétection spatiale

Karoui, Moussa Sofiane 17 December 2012 (has links) (PDF)
Cette thèse concerne la séparation aveugle de sources, qui consiste à estimer un ensemble de signaux sources inconnus à partir d'un ensemble de signaux observés qui sont des mélanges à paramètres inconnus de ces signaux sources. C'est dans ce cadre que le travail de recherche de cette thèse concerne le développement et l'utilisation de méthodes linéaires innovantes de séparation de sources pour des applications en imagerie de télédétection spatiale. Des méthodes de séparation de sources sont utilisées pour prétraiter une image multispectrale en vue d'une classification supervisée de ses pixels. Deux nouvelles méthodes hybrides non-supervisées, baptisées 2D-Corr-NLS et 2D-Corr-NMF, sont proposées pour l'extraction de cartes d'abondances à partir d'une image multispectrale contenant des pixels purs. Ces deux méthodes combinent l'analyse en composantes parcimonieuses, le clustering et les méthodes basées sur les contraintes de non-négativité. Une nouvelle méthode non-supervisée, baptisée 2D-VM, est proposée pour l'extraction de spectres à partir d'une image hyperspectrale contenant des pixels purs. Cette méthode est basée sur l'analyse en composantes parcimonieuses. Enfin, une nouvelle méthode est proposée pour l'extraction de spectres à partir d'une image hyperspectrale ne contenant pas de pixels purs, combinée avec une image multispectrale, de très haute résolution spatiale, contenant des pixels purs. Cette méthode est fondée sur la factorisation en matrices non-négatives couplée avec les moindres carrés non-négatifs. Comparées à des méthodes de la littérature, d'excellents résultats sont obtenus par les approches méthodologiques proposées.

Page generated in 0.0983 seconds