• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 430
  • 9
  • 9
  • 9
  • 8
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 443
  • 443
  • 292
  • 292
  • 123
  • 82
  • 54
  • 52
  • 48
  • 46
  • 46
  • 43
  • 43
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Structure learning of Bayesian networks via data perturbation / Aprendizagem estrutural de Redes Bayesianas via perturbação de dados

Gross, Tadeu Junior 29 November 2018 (has links)
Structure learning of Bayesian Networks (BNs) is an NP-hard problem, and the use of sub-optimal strategies is essential in domains involving many variables. One of them is to generate multiple approximate structures and then to reduce the ensemble to a representative structure. It is possible to use the occurrence frequency (on the structures ensemble) as the criteria for accepting a dominant directed edge between two nodes and thus obtaining the single structure. In this doctoral research, it was made an analogy with an adapted one-dimensional random-walk for analytically deducing an appropriate decision threshold to such occurrence frequency. The obtained closed-form expression has been validated across benchmark datasets applying the Matthews Correlation Coefficient as the performance metric. In the experiments using a recent medical dataset, the BN resulting from the analytical cutoff-frequency captured the expected associations among nodes and also achieved better prediction performance than the BNs learned with neighbours thresholds to the computed. In literature, the feature accounted along of the perturbed structures has been the edges and not the directed edges (arcs) as in this thesis. That modified strategy still was applied to an elderly dataset to identify potential relationships between variables of medical interest but using an increased threshold instead of the predict by the proposed formula - such prudence is due to the possible social implications of the finding. The motivation behind such an application is that in spite of the proportion of elderly individuals in the population has increased substantially in the last few decades, the risk factors that should be managed in advance to ensure a natural process of mental decline due to ageing remain unknown. In the learned structural model, it was graphically investigated the probabilistic dependence mechanism between two variables of medical interest: the suspected risk factor known as Metabolic Syndrome and the indicator of mental decline referred to as Cognitive Impairment. In this investigation, the concept known in the context of BNs as D-separation has been employed. Results of the carried out study revealed that the dependence between Metabolic Syndrome and Cognitive Variables indeed exists and depends on both Body Mass Index and age. / O aprendizado da estrutura de uma Rede Bayesiana (BN) é um problema NP-difícil, e o uso de estratégias sub-ótimas é essencial em domínios que envolvem muitas variáveis. Uma delas consiste em gerar várias estruturas aproximadas e depois reduzir o conjunto a uma estrutura representativa. É possível usar a frequência de ocorrência (no conjunto de estruturas) como critério para aceitar um arco dominante entre dois nós e assim obter essa estrutura única. Nesta pesquisa de doutorado, foi feita uma analogia com um passeio aleatório unidimensional adaptado para deduzir analiticamente um limiar de decisão apropriado para essa frequência de ocorrência. A expressão de forma fechada obtida foi validada usando bases de dados de referência e aplicando o Coeficiente de Correlação de Matthews como métrica de desempenho. Nos experimentos utilizando dados médicos recentes, a BN resultante da frequência de corte analítica capturou as associações esperadas entre os nós e também obteve melhor desempenho de predição do que as BNs aprendidas com limiares vizinhos ao calculado. Na literatura, a característica contabilizada ao longo das estruturas perturbadas tem sido as arestas e não as arestas direcionadas (arcos) como nesta tese. Essa estratégia modificada ainda foi aplicada a um conjunto de dados de idosos para identificar potenciais relações entre variáveis de interesse médico, mas usando um limiar aumentado em vez do previsto pela fórmula proposta - essa cautela deve-se às possíveis implicações sociais do achado. A motivação por trás dessa aplicação é que, apesar da proporção de idosos na população ter aumentado substancialmente nas últimas décadas, os fatores de risco que devem ser controlados com antecedência para garantir um processo natural de declínio mental devido ao envelhecimento permanecem desconhecidos. No modelo estrutural aprendido, investigou-se graficamente o mecanismo de dependência probabilística entre duas variáveis de interesse médico: o fator de risco suspeito conhecido como Síndrome Metabólica e o indicador de declínio mental denominado Comprometimento Cognitivo. Nessa investigação, empregou-se o conceito conhecido no contexto de BNs como D-separação. Esse estudo revelou que a dependência entre Síndrome Metabólica e Variáveis Cognitivas de fato existe e depende tanto do Índice de Massa Corporal quanto da idade.
442

Structure learning of Bayesian networks via data perturbation / Aprendizagem estrutural de Redes Bayesianas via perturbação de dados

Tadeu Junior Gross 29 November 2018 (has links)
Structure learning of Bayesian Networks (BNs) is an NP-hard problem, and the use of sub-optimal strategies is essential in domains involving many variables. One of them is to generate multiple approximate structures and then to reduce the ensemble to a representative structure. It is possible to use the occurrence frequency (on the structures ensemble) as the criteria for accepting a dominant directed edge between two nodes and thus obtaining the single structure. In this doctoral research, it was made an analogy with an adapted one-dimensional random-walk for analytically deducing an appropriate decision threshold to such occurrence frequency. The obtained closed-form expression has been validated across benchmark datasets applying the Matthews Correlation Coefficient as the performance metric. In the experiments using a recent medical dataset, the BN resulting from the analytical cutoff-frequency captured the expected associations among nodes and also achieved better prediction performance than the BNs learned with neighbours thresholds to the computed. In literature, the feature accounted along of the perturbed structures has been the edges and not the directed edges (arcs) as in this thesis. That modified strategy still was applied to an elderly dataset to identify potential relationships between variables of medical interest but using an increased threshold instead of the predict by the proposed formula - such prudence is due to the possible social implications of the finding. The motivation behind such an application is that in spite of the proportion of elderly individuals in the population has increased substantially in the last few decades, the risk factors that should be managed in advance to ensure a natural process of mental decline due to ageing remain unknown. In the learned structural model, it was graphically investigated the probabilistic dependence mechanism between two variables of medical interest: the suspected risk factor known as Metabolic Syndrome and the indicator of mental decline referred to as Cognitive Impairment. In this investigation, the concept known in the context of BNs as D-separation has been employed. Results of the carried out study revealed that the dependence between Metabolic Syndrome and Cognitive Variables indeed exists and depends on both Body Mass Index and age. / O aprendizado da estrutura de uma Rede Bayesiana (BN) é um problema NP-difícil, e o uso de estratégias sub-ótimas é essencial em domínios que envolvem muitas variáveis. Uma delas consiste em gerar várias estruturas aproximadas e depois reduzir o conjunto a uma estrutura representativa. É possível usar a frequência de ocorrência (no conjunto de estruturas) como critério para aceitar um arco dominante entre dois nós e assim obter essa estrutura única. Nesta pesquisa de doutorado, foi feita uma analogia com um passeio aleatório unidimensional adaptado para deduzir analiticamente um limiar de decisão apropriado para essa frequência de ocorrência. A expressão de forma fechada obtida foi validada usando bases de dados de referência e aplicando o Coeficiente de Correlação de Matthews como métrica de desempenho. Nos experimentos utilizando dados médicos recentes, a BN resultante da frequência de corte analítica capturou as associações esperadas entre os nós e também obteve melhor desempenho de predição do que as BNs aprendidas com limiares vizinhos ao calculado. Na literatura, a característica contabilizada ao longo das estruturas perturbadas tem sido as arestas e não as arestas direcionadas (arcos) como nesta tese. Essa estratégia modificada ainda foi aplicada a um conjunto de dados de idosos para identificar potenciais relações entre variáveis de interesse médico, mas usando um limiar aumentado em vez do previsto pela fórmula proposta - essa cautela deve-se às possíveis implicações sociais do achado. A motivação por trás dessa aplicação é que, apesar da proporção de idosos na população ter aumentado substancialmente nas últimas décadas, os fatores de risco que devem ser controlados com antecedência para garantir um processo natural de declínio mental devido ao envelhecimento permanecem desconhecidos. No modelo estrutural aprendido, investigou-se graficamente o mecanismo de dependência probabilística entre duas variáveis de interesse médico: o fator de risco suspeito conhecido como Síndrome Metabólica e o indicador de declínio mental denominado Comprometimento Cognitivo. Nessa investigação, empregou-se o conceito conhecido no contexto de BNs como D-separação. Esse estudo revelou que a dependência entre Síndrome Metabólica e Variáveis Cognitivas de fato existe e depende tanto do Índice de Massa Corporal quanto da idade.
443

Exame médico periódico e risco cardiovascular em trabalhadores de uma grande empresa do Rio de Janeiro / Periodic medical examinations and cardiovascular risk in workers of a large company in Rio de Janeiro

Bruno, Ana Cecilia Rocha January 2009 (has links)
Made available in DSpace on 2011-05-04T12:36:24Z (GMT). No. of bitstreams: 0 Previous issue date: 2009 / Neste estudo, foi analisado o risco cardiovascular de trabalhadores administrativos de uma grande empresa do Rio de Janeiro. Para tanto, a Síndrome Metabólica foi considerada como marcador, por encerrar um conjunto de alterações associadas a um elevado risco de doença cardiovascular e/ou diabetes, tais como obesidade abdominal, resistência insulínica, dislipidemia e hipertensão arterial. Os critérios para Síndrome Metabólica da Organização Mundial de Saúde, do Programa Nacional de Educação para o Colesterol-Terceiro Painel para Tratamento do Adulto e da Federação Internacional de Diabetes foram utilizados para diagnóstico, assim como o algoritmo de Framingham foi calculado. Dados do exame médico periódico foram reunidos, no período compreendido entre janeiro de 2003 até dezembro de 2007. Dos 2.052 exames realizados em 2003, 1.260 foram considerados para análise por estarem completos. Um grupo de 123 trabalhadores foi diagnosticado pelo critério da Federação Internacional de Diabetes e acompanhado durante cinco anos. Estabeleceu-se a relação entre a síndrome e as diversas ocupações, bem como com o absenteísmo. A prevalênciade 9,7 por cento foi abaixo da encontrada na literatura. Não foram observadas diferenças entre os grupos ocupacionais e, quanto ao absenteísmo, as faltas por problemas do aparelho circulatório foram a segunda causa mais importante. Verificou-se a baixa participação dos trabalhadores nos programas de saúde oferecidos. Os trabalhadores que realizaram exame médico periódico em 2007 foram diagnosticados pelos três critérios. A prevalência observada de 3,8 por cento com base no critério da Organização Mundial de Saúde; 16,6 por cento no Programa Nacional de Educação para o Colesterol-Terceiro Painel para Tratamento do Adulto e 16,3 por cento na Federação Internacional de Diabetes, novamente, foi abaixo da encontrada na literatura. O algoritmo de Framingham foi calculado e ao considerar a Síndrome Metabólica como fator agravante, quintuplicou-se a parcela de trabalhadores em alto risco para doenças cardiovasculares. Esse grupo necessita abordagem especial para tratamento médico e modificação do estilo de vida, a fim de reduzir o risco de incapacidade ou morte prematura. / In this dissertation the cardiovascular risk among office workers from a large company in Rio de Janeiro was studied. So, the Metabolic Syndrome was considered as a marker because it is associated with a clustering of components that increase the risk of cardiovascular disease and/or diabetes, like abdominal obesity, insulin resistance, dyslipidemia and elevated blood pressure. Among the several Metabolic Syndrome criteria the following three were used: World Health Organization, National Cholesterol Education Program - Third Adult Treatment Panel, and International Diabetes Federation. Also the Framingham Risk Score was calculated for this population and combined to the Metabolic Syndrome in order to improve the overall cardiovascular risk marker. Data were collected from the periodic medical examination between January 2003 and December 2007. From 2.052 exams realized in 2003, 1.260 were considered. A group of 123 workers was diagnosed with Metabolic Syndrome using the International Diabetes Federation criteria and followed during five years. The prevalence found of 9,7% was lower than the one reported in the literature. The Metabolic Syndrome prevalence was uniformly distributed between the different occupational groups in the company. Circulatory disorders were the second cause for lost workdays. Poor participation in the health programs available was observed. The workers who were submitted to the periodic medical examination in 2007 were diagnosed using the three criteria. The prevalence found were the following: World Health Organization - 3,8%; National Cholesterol Education Program- Third Adult Treatment Panel - 16,6%; and International Diabetes Federation - 16,3%. All the three were lower than the one reported in the literature. When the Metabolic Syndrome was added to the Framingham Risk Score as a grievance factor, a 5-fold increase in workers with high risk of cardiovascular disease was observed. This group is in need of a special approach for medical treatment and lifestyle change, in order to reduce disability and premature death.

Page generated in 0.0443 seconds