• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tephrostratigraphy, petrography, geochemistry, age and fossil record of the Ganigobis Shale Member and associated glaciomarine deposits of the Dwyka Group, Late Carboniferous, southern Africa / Tephrostratigraphie, Petrographie, Geochemie, Alter und Fossilinhalt des "Ganigobis Shale Members" und assozierte, glaziomarine Ablagerungen der Dwyka Gruppe, Oberkarbon, südliches Afrika

Bangert, Berthold January 2000 (has links) (PDF)
Thin, pyroclastic marker beds are preserved in argillaceous units of the Dwyka Group in southern Nambia and South Africa which are the earliest witnesses of volcanism in Karoo-equivalent strata of southern Africa. The aim of this study is to present the field appearance of these marker beds, to characterise their mineralogy, geochemistry and heavy mineral contents and to present new radiometric age data from their juvenile zircons. Carboniferous-Permian Karoo deposits in the Aranos Basin of southern Namibia include the glacially dominated, Carboniferous Dwyka Group and the shelf sediments of the overlying Permian Ecca Group. The Dwyka Group can be subdivided into four upward-fining deglaciation sequences, each capped by relatively fine-grained glaciolacustrine or glaciomarine deposits. The uppermost part of the second deglaciation sequence comprises a thick fossiliferous mudstone unit, referred to as the ”Ganigobis Shale Member”. An abundance of marine macro- and ichnofossils as well as extrabasinally derived ashfall tuff beds characterise the more than 40 m thick mudstones and provide the basis for an integrated high-resolution biostratigraphic and tephrostratigraphic framework. The Ganigobis Shale Member contains remains of paleoniscoid fishes, bivalves, gastropods, scyphozoa, crinoid stalks, sponges and sponge spicules, radiolaria, coprolites and permineralised wood. These mostly marine body and trace fossils record the extent of the first of a series of marine incursions into the disintegrating Gondwanan interior as early as the Carboniferous. Within the Ganigobis Shale Member 21 bentonitic tuff beds displaying a thickness of 0.1 and 2.0 cm were determined which in part can be traced laterally over tens of kilometres indicating an ashfall derivation. Further bentonitic tuff beds of the Dwyka Group were detected in cut banks of the Orange River near Zwartbas in the Karasburg Basin (southern Namibia). The 65 tuff beds vary between 0.1 and 4.0 cm in thickness. Due to a similar fossil content and age of the background deposits, the tuff beds are thought to have originated from the same source area as those from the Aranos Basin. Thin-sections reveal the derivation of the tuff beds as distal fallout ashes produced by explosive volcanic eruptions. The matrix consists of a micro- to cryptocrystalline clay mineral-quartz mixture. Rare fragments of splinter quartz, completely recrystallized ash-sized particles of former volcanic glass and few apatite and zircon grains are the only juvenile components. The tuff beds contain as non-opaque, juvenile heavy minerals mostly zircon, apatite, monazite and sphene but also biotite, garnet, hornblende and tourmaline. Geochemical analyses point to an original, intermediate to acid composition of the tuff samples. LREE enrichment and Eu-anomalies show that the parent magma of the tuff beds was a highly evolved calc-alkaline magma. Tectonomagmatic discrimination diagrams point to a volcanic arc setting. Bedding characteristics and the lack of any Carboniferous-Permian volcanic successions onshore Namibia makes an aeolian transport of the ash particles over larger distances likely. Siliceous ashes could thus have been transported by prevailing south-westerly winds from arc-related vents in South America to southern Africa. A second, more local source area could have been located in an intracontinental rift zone along the western margin of southern Africa which is indicated by north-south directed ice-flow directions in the Late Carboniferous. SHRIMP-based age determinations of juvenile magmatic zircons separated from the tuff beds allow a new time calibration of Dwyka Group deglaciation sequences II - IV and the Dwyka/Ecca boundary. Zircons of the Ganigobis Shale Member yield SHRIMP-ages of 302-300 Ma. This dates the uppermost part of the second deglaciation sequence in southern Namibia to the Late Carboniferous (Gzelian) and provides a minimum age for the onset of Karoo-equivalent marine deposition. The age of the uppermost argillaceous part of the third deglaciation sequence (297 Ma) was determined from zircons of a tuffaceous bed sampled in a roadcut in the Western Cape Province, South Africa. The deposits correlate with the Hardap Shale Member in the Aranos Basin of southern Namibia which are part of much more widespread Eurydesma transgression. The age of the Dwyka/Ecca boundary was determined by SHRIMP-measurements of juvenile zircons from two tuff beds of the basal Prince Albert Formation sampled in the Western Cape Province (South Africa). The zircons revealed ages of 289 - 288 Ma which date the Dwyka/Ecca boundary at about 290 Ma. According to these ages, deglaciation sequences II-IV lasted for 5 Ma on average. / Geringmächtige, bentonitische Tuffe treten in Tonsteinabschnitten der karbonen Dwyka Gruppe im südlichen Namibia und Südafrika auf. Sie repräsentieren die ersten Hinweise auf eine vulkanische Tätigkeit innerhalb der Karoosedimente im südlichen Afrika. Die vorliegende Dissertation faßt die Geländebeschreibung der Tuffe, ihre Petrographie, Mineralogie und Geochemie zusammen. Juvenile Zirkone der Tuffe erlaubten eine radiometrisches Altersermittlung mittels SHRIMP-Analyse. Sie stellen somit die ersten radiometrisch exakt ermittelten Altersdaten innerhalb der Dwyka Gruppe dar. Permokarbone Karoosedimente des Aranos Beckens in Südnamibia setzen sich aus der glazigenen Dwyka Gruppe des Karbons und den Schelfsedimenten der folgenden Ecca Gruppe des Perms zusammen. Die Dwyka-Gruppe kann dabei in vier Entgletscherungssequenzen unterteilt werden. Der oberste Bereich jeder Entgletscherungssequenz ist meist durch glaziomarine Ablagerungen gekenn-zeichnet. Im Fall der zweiten Entgletscherungssequenz handelt es sich um einen mehr als 40 m mäch-tigen, fossilführenden Tonsteinabschnitt, der als ‘Ganigobis Shale Member’ bekannt ist. Eine Vielzahl von meist marinen Makro- und Spurenfossilien (palaeoniskoide Fischen, Bivalven, Gastropoden, Scyphozoen, Crinoideenstielglieder, Radiolarien) sowie distale Aschentuffe bilden die Grundlage für eine hochauflösende, biostratigraphische und tephrostratigraphische Gliederung des ‘Ganigobis Shale Members’. 21 bentonitische, lateral verfolgbare Aschentuffe mit einer Mächtigkeit zwischen 0.1 und 2.0 cm wurden innerhalb des ‘Ganigobis Shale Member’ bestimmt. 65 weitere, bis 4.0 cm mächtige Aschentuffe der Dwyka Gruppe wurden in Uferbänken des Orange Rivers in der Nähe von Zwartbas im Karasburg Becken Südnamibias entdeckt. Aufgrund eines ähnlichen Fossilinhaltes der Hinter-grundsedimente und eines ähnlichen Alters der Tuffe kann von dem gleichen Herkunftsgebiet der Aschen ausgegangen werden. Dünnschliffe der Tuffe zeigen, daß es sich bei den Horizonten um distale Aschenfallablagerungen handelt, die durch explosiven Vulkanismus gefördert wurden. Die Matrix besteht aus einer mikro- bis kryptokristallinem Tonmineral-Quarz- Mischung. Idiomorpher, hexagonaler Quarz, Splitterquarze und Quarzfragmente, vollständig rekristallisierte Aschenkörner und vereinzelt Schwerminerale wie Apatit und Zirkon sind weitere juvenile Komponenten. Folgende transparente, juvenile Schwerminerale treten auf: Zirkon, Apatit, Monazit, Titanit, Biotit, Granat, Hornblende und Turmalin. Geochemische Analysen weisen auf eine intermediäre bis saure Ausgangszusammensetzung der Tuffe hin. Die Anreicherung der LREE und die Eu-Anomalien zeigen, daß die Zusammensetzung des Ausgangsmagma der Tuffe kalkalkalisch und sehr differenziert war. Tektonomagmatische Diskrimi-nationsdiagramme deuten eine Subduktionszone als Herkunftsgebiet der Tuffe an. Die Korngröße der Tuffe und das Fehlen jeglicher permokarboner, vulkanischer Abfolgen in Namibia läßt auf einen Transport der Aschen über größere Distanzen schließen. Saure Aschen könnten bei vorherrschenden südwestlichen Windrichtungen von Südamerika, wo saurer Inselbogenmagmatismus im Permokarbon bekannt ist, nach Südafrika und Namibia transportiert worden sein. Ein zweites, lokaleres Herkunfts-gebiet der Aschentuffe könnte innerhalb einer kontinentalen Riftzone am Westrand des südlichen Afrikas gelegen haben. Sie ist im Oberkarbon durch allgemein nord-südgerichtete Eisstromrichtungen im Aranos und Karasburg Becken (Südnamibia) und im Perm durch die marinen Ablagerungen der Whitehill Formation (Ecca Gruppe) angedeutet. Altersbestimmungen an den juvenilen Zirkonen ermöglichten sowohl eine neue Zeiteinschätzung der Entgletscherungssequenzen II - IV innerhalb der Dwyka Gruppe als auch eine zeitliche Neukali-brierung der Dwyka-/Ecca Grenze. Datierte Zirkone aus Tuffen des Ganigobis Shale Members ergaben SHRIMP-Alter von 302 - 300 Ma. Damit fallen der oberste Bereich der zweiten Entgletscherungssequenz und die in den marinen enthaltenen Fossilien in das Oberkarbon (Gzelian). Das Alter des Topbereichs der dritten Entgletscherungssequenz (297 Ma) wurde an Zirkonen einer tuffitischen Schicht aus der Provinz Westkap in Südafrika bestimmt. Die dort aufgeschlossenen Ablagerungen korrelieren mit dem Hardap Shale Member im Aranos Becken Süd-namibias und sind Teil der weltweit bekannten Eurydesma - Transgression. Das Alter der Dwyka / Ecca-Grenze wurde an juvenilen Zirkonen von Tuffen der basalen Prince Albert Formation (Ecca Gruppe) in der Provinz Westkap (Südafrika) bestimmt. Die U-Pb - Messungen an den Zirkonen ergaben Alter von 289 - 288 Ma, die die Dwyka / Ecca-Grenze bei circa 290 Ma festlegen.
2

Mapping, analysis, and interpretation of the glacier inventory data from Jotunheimen, South Norway, since the maximum of the 'Little Ice Age' / Kartierung, Analyse und Interpretation der Gletscherinventardaten von Jotunheimen, Süd-Norwegen, seit dem Maximum der "Kleinen Eiszeit"

Baumann, Sabine Christine January 2009 (has links) (PDF)
Glacier outlines during the ‘Little Ice Age’ maximum in Jotunheimen were mapped by using remote sensing techniques (vertical aerial photos and satellite imagery), glacier outlines from the 1980s and 2003, a digital terrain model (DTM), geomorphological maps of individual glaciers, and field-GPS measurements. The related inventory data (surface area, minimum and maximum altitude) and several other variables (e.g. slope, range) were calculated automatically by using a geographical information system. The length of the glacier flowline was mapped manually based on the glacier outlines at the maximum of the ‘Little Ice Age’ and the DTM. The glacier data during the maximum of the ‘Little Ice Age’ were compared with the Norwegian glacier inventory of 2003. Based on the glacier inventories during the maximum of the ‘Little Ice Age’, the 1980s and 2003, a simple parameterization after HAEBERLI & HOELZLE (1995) was performed to estimate unmeasured glacier variables, as e.g. surface velocity or mean net mass balance. Input data were composed of surface glacier area, minimum and maximum elevation, and glacier length. The results of the parameterization were compared with the results of previous parameterizations in the European Alps and the Southern Alps of New Zealand (HAEBERLI & HOELZLE 1995; HOELZLE et al. 2007). A relationship between these results of the inventories and of the parameterization and climate and climate changes was made. / Die Gletscherumrisse während des Maximalstandes der „Kleinen Eiszeit“ in Jotunheimen wurden unter der Verwendung von Fernerkundungstechniken (vertikale Luftbilder und Satellitenbilder), von Gletscherumrissen aus den 1980er Jahren und von 2003, von einem digitalen Geländemodel (DTM), von geomorphologischen Karten einzelner Gletscher und von GPS-Messungen im Gelände kartiert. Die daraus erzielten Inventardaten (Gletscherfläche, minimale und maximale Höhe) und einige andere Variablen (z.B. Hangneigung, Höhendifferenz) wurden automatisch mit einem geographischen Informationssystem berechnet. Die Länge der Gletscherfließlinie wurde basierend auf den Gletscherumrissen zum Maximum der „Kleinen Eiszeit“ und dem DTM manuell kartiert. Die Gletscherdaten zum Maximalstand der „Kleinen Eiszeit“ wurden mit dem Gletscherinventar von 2003 verglichen. Basierend auf den letscherinventaren zum Maximum der „Kleinen Eiszeit“, von den 1980er Jahren und von 2003 wurde eine einfache Parametrisierung nach HAEBERLI & HOELZLE (1995) durchgeführt, um ungemessene Gletschervariablen, wie z.B. Oberflächengeschwindigkeit oder mittlere Netto-Massenbilanz, abzuschätzen. Eingabedaten bestanden aus Gletscherfläche, minimaler und maximale Höhe und der Gletscherlänge. Die Resultate der Parametrisierung wurden mit den Ergebnissen früherer Parametrisierungen aus den Europäischen Alpen und den Southern Alps auf Neuseeland verglichen (HAEBERLI & HOELZLE 1995; HOELZLE et al. 2007). Eine Verbindung zwischen diesen Ergebnissen aus den Inventaren und der Parametrisierung und dem Klima und der Klimaänderung wurde hergestellt.
3

Gestaltung des Wasserhaushalts in den bergbaubeeinflussten Teileinzugsgebieten von Weißer Elster und Pleiße im öffentlichen Interesse: Grundsatzpapier zur Bestandsaufnahme und Ableitung von Handlungserfordernissen

27 September 2019 (has links)
Die Auswirkungen des Braunkohlenbergbaus auf den Gebietswasserhaushalt bilden seit 1990 einen Schwerpunkt der regional- und fachplanerischen Auseinandersetzungen. Dabei fokussieren sich die Problemfelder aufgrund der Fläche, Dauer und Intensität der bergbaulichen Eingriffe auf den „Südraum Leipzig“.
4

Regionale Betrachtungen und Paläomilieu-Rekonstruktion der Sedimentablagerungen des Senftenberger Elbelaufes

Gold, Christiane 01 March 2024 (has links)
Ein durch den Lausitzer Braunkohlentagebau Welzow-Süd erschlossener, etwa 250 x 800 m ausgedehnter Aufschluss in den Sedimenten des sogenannten Senftenberger Elbelaufes bzw. der obermiozänen Rauno-Formation bot Anlass für umfangreiche Geländedokumentationen und eine Neubetrachtung der Thematik dieser Elbeablagerungen. Anhand verschiedener sedimentologischer und chemisch-mineralogischer Dokumentationen und Analyseverfahren wurden sowohl dieser Aufschluss als auch acht weitere Lokalitäten untersucht. Im Fokus der Auswertung standen zum einen eine detaillierte Milieu- und Geneseinterpretation der fluviatilen Sedimente im Tagebau Welzow-Süd, zum anderen die Frage nach der stratigraphischen Korrelation der durch quartäre Erosion isolierten Aufschlüsse. Das Ergebnis zeigt, dass die Senftenberger Elbe mit der Hebung des Oberlausitz-Plateaus als verflochtener Fluss vom späteren Elbtal aus durch die Lausitz Richtung Paläo-Nordsee strömte. Eine räumlich-zeitliche Korrelation der einzelnen Aufschlüsse und eine konkrete Flussverlaufsrekonstruktion sind nicht möglich. Auch die bisher etablierte Unterteilung der Senftenberger Elbe in drei zeitliche Abschnitte ist nicht belastbar. Es ist von einer variablen Flussverlaufsentwicklung mit zuströmenden Nebenflüssen auszugehen. Die biostratigraphischen Arbeiten verschiedener Autoren belegen ein obermiozänes bis pliozänes Alter.:Zusammenfassung Abstract Abbildungsverzeichnis Tabellenverzeichnis Anlagenverzeichnis Abkürzungsverzeichnis 1 Einleitung 2 Methodik 2.1 Geländeuntersuchungen 2.2 Laboruntersuchungen 2.3 Untersuchungen an Konkretionen 3 Regionale Geologie 4 Stand der Wissenschaft 5 Ergebnisse 5.1 Tagebau Auerhahn 5.2 Ehemalige Kiesgrube bei Brauna 5.3 Tagebau Cunnersdorf 5.4 Tagebau Laußnitz I 5.5 Tagebau bei Lauta 5.6 Tagebau Nochten 5.7 Tagebau Sallgast 5.8 Tagebau Welzow-Süd 5.9 Tagebau Wiesa 5.10 Korngrößenparameter 5.11 Kornform 5.12 Modalbestand der Gerölle 6,3 - 10 mm 5.13 Hellglimmer 5.14 Schwerminerale 5.15 Paläoströmung 6 Interpretation und Diskussion 7 Zusammenfassung und Ausblick 8 Danksagung 9 Literaturverzeichnis / The lignite opencast mine Welzow-Süd, Lusatia, provided an excellent outcrop of the fluvial sediments of the so-called Senftenberger Elbelauf (Rauno Formation, Upper Miocene) with a dimension of 250 to 800 m, that delivered new insights into the history of this former river. This location and additionally eight further outcrops were investigated using different sedimentological and chemical-mineralogical analyses. A detailed interpretation of the environment and genesis of the fluvial sediments in Welzow-Süd is given and the results for all investigated outcrops are related. After the uplift of the Upper Lusatian Plateau, the Senftenberger Elbe developed to a braided river, that ran through the Lusatian region towards the paleo North Sea. A precise reconstruction of the river channels way is not possible. A reliable spatiotemporal correlation of the single outcrops can’t be given. Furthermore, the so far established division of this river into three parts of different ages must be rejected. A complex river system with feeder channels and variable flow pattern is more probable. The biostratigraphic results of different authors prove an Upper Miocene to Pliocene age.:Zusammenfassung Abstract Abbildungsverzeichnis Tabellenverzeichnis Anlagenverzeichnis Abkürzungsverzeichnis 1 Einleitung 2 Methodik 2.1 Geländeuntersuchungen 2.2 Laboruntersuchungen 2.3 Untersuchungen an Konkretionen 3 Regionale Geologie 4 Stand der Wissenschaft 5 Ergebnisse 5.1 Tagebau Auerhahn 5.2 Ehemalige Kiesgrube bei Brauna 5.3 Tagebau Cunnersdorf 5.4 Tagebau Laußnitz I 5.5 Tagebau bei Lauta 5.6 Tagebau Nochten 5.7 Tagebau Sallgast 5.8 Tagebau Welzow-Süd 5.9 Tagebau Wiesa 5.10 Korngrößenparameter 5.11 Kornform 5.12 Modalbestand der Gerölle 6,3 - 10 mm 5.13 Hellglimmer 5.14 Schwerminerale 5.15 Paläoströmung 6 Interpretation und Diskussion 7 Zusammenfassung und Ausblick 8 Danksagung 9 Literaturverzeichnis

Page generated in 0.0158 seconds