Spelling suggestions: "subject:"adenosylmethionine"" "subject:"sadenosylmethionine""
11 |
Avaliação da metilação do gene TP53 e instabilidade genômica em ratos expostos a metionina e doxorrubicina / TP53 gene methylation and genomic instability in methionine and doxorubicin exposed ratsAmaral, Cátia Lira do 08 February 2010 (has links)
O estado de metilação é suscetível a mudanças quando os organismos são expostos a agentes ambientais tais como componentes dos alimentos e medicamentos. Uma dieta rica em metionina (Met) poderia modular a concentração de S-adenosilmetionina (SAM) e S-adenosilhomocisteína (SAH) e alterar o estado de metilação da região promotora de genes supressores de tumores. Tanto a hipometilação global quanto a hipermetilação de genes específicos estão envolvidas na instabilidade genômica e poderiam resultar em dano ao DNA. Este estudo avalia se a dieta suplementada com Met associada a doxorrubicina (DXR), um fármaco antitumoral que induz espécies reativas, resulta em alterações no estado de metilação da região promotora do gene TP53, na razão SAM/SAH, na concentração de glutationa (GSH) e em dano ao DNA. Quarenta ratos machos Wistar foram separados em dois grupos: dieta suplementada com Met (ração comercial acrescida de 2% Met) e dieta controle (ração comercial) por seis semanas. Cada grupo foi subdividido em dois subgrupos que receberam DXR (1mg/Kg) ou solução salina intraperitoneal na terceira e sexta semanas de tratamento. Os rins e fígado foram utilizados para isolamento do DNA, determinação da concentração de SAM, SAH e GSH, e análise da instabilidade genômica. Todos os grupos apresentaram o mesmo estado de metilação da região promotora do gene TP53, determinado pelo método de análise de restrição combinada com bissulfito (COBRA). Este fato poderia ser explicado pelo índice de metilação (razão SAM/SAH) que permaneceu inalterado, possivelmente devido a uma adaptação do ciclo da Met que manteve a concentração de SAM. A depleção de GSH não ocorreu quando DXR foi associada a dieta suplementada com Met. Portanto, a suplementação com Met manteve a concentração de GSH em ratos tratados com DXR. A dieta suplementada com Met não induziu instabilidade genômica e não alterou o dano ao DNA induzido pela DXR. Em conclusão, DXR induz depleção de GSH que é inibida pela suplementação com Met. Entretanto, a mesma suplementação não previne a instabilidade genômica induzida pela DXR. A dieta suplementada com Met aumenta a concentração de SAH renal sem alterar a concentração de SAM e GSH. Tanto a dieta suplementada quanto a DXR não induzem hipermetilação na região promotora do gene TP53. / The DNA methylation status is susceptible to changes when organisms are exposed to environmental agents such as food components and drugs. A methionine-rich (Met) diet may modulate S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) concentrations, which could change the DNA methylation status in the promoter region of tumor suppressor genes. Global hipomethylation and gene-specific hipermethylation are involved in genomic instability and it could result in DNA damage. This study intends to evaluate if a Met-rich diet associated with doxorubicin (DXR), an antitumoral drug that induces reactive species, result in changes in the methylation status of the TP53 gene promoter, in the SAM/SAH ratio, in glutathione levels (GSH) and in DNA damage. Forty male Wistar rats were separated into two groups: Met-rich diet (standard chow plus 2% Met), and control diet (standard chow) for six weeks. Each group was subdivided into another two groups that received DXR (1mg/kg) or saline intraperitoneally in the third and sixth weeks of the experiment. The kidneys and the liver were removed for DNA isolation, SAM, SAH and GSH determination, and genomic instability assay. All groups showed the same unmethylated status in the TP53 promoter according to the Combined Bisulfite Restriction Analysis (COBRA). This could be explained by the fact that the methylation index (SAM/SAH ratio) remained unchanged, possibly because of an adaptive Met pathway that maintains SAM levels. GSH depletion did not occur when DXR was associated with the Met-rich diet. As a matter of fact, the Met-rich diet improved GSH concentration in DXR-treated rats. Met-rich diet did not induce genomic instability, and it did not alter DNA damage induced by DXR. In conclusion, DXR induces GSH depletion which is inhibited by Met supplementation. However, Met-rich diet may not prevent genomic instability induced by DXR. A Met-rich diet increases SAH levels; however, it does not change GSH and SAM levels. Neither Met supplementation nor DXR induced DNA hypermethylation in the TP53 gene promoter.
|
12 |
Avaliação da metilação do gene TP53 e instabilidade genômica em ratos expostos a metionina e doxorrubicina / TP53 gene methylation and genomic instability in methionine and doxorubicin exposed ratsCátia Lira do Amaral 08 February 2010 (has links)
O estado de metilação é suscetível a mudanças quando os organismos são expostos a agentes ambientais tais como componentes dos alimentos e medicamentos. Uma dieta rica em metionina (Met) poderia modular a concentração de S-adenosilmetionina (SAM) e S-adenosilhomocisteína (SAH) e alterar o estado de metilação da região promotora de genes supressores de tumores. Tanto a hipometilação global quanto a hipermetilação de genes específicos estão envolvidas na instabilidade genômica e poderiam resultar em dano ao DNA. Este estudo avalia se a dieta suplementada com Met associada a doxorrubicina (DXR), um fármaco antitumoral que induz espécies reativas, resulta em alterações no estado de metilação da região promotora do gene TP53, na razão SAM/SAH, na concentração de glutationa (GSH) e em dano ao DNA. Quarenta ratos machos Wistar foram separados em dois grupos: dieta suplementada com Met (ração comercial acrescida de 2% Met) e dieta controle (ração comercial) por seis semanas. Cada grupo foi subdividido em dois subgrupos que receberam DXR (1mg/Kg) ou solução salina intraperitoneal na terceira e sexta semanas de tratamento. Os rins e fígado foram utilizados para isolamento do DNA, determinação da concentração de SAM, SAH e GSH, e análise da instabilidade genômica. Todos os grupos apresentaram o mesmo estado de metilação da região promotora do gene TP53, determinado pelo método de análise de restrição combinada com bissulfito (COBRA). Este fato poderia ser explicado pelo índice de metilação (razão SAM/SAH) que permaneceu inalterado, possivelmente devido a uma adaptação do ciclo da Met que manteve a concentração de SAM. A depleção de GSH não ocorreu quando DXR foi associada a dieta suplementada com Met. Portanto, a suplementação com Met manteve a concentração de GSH em ratos tratados com DXR. A dieta suplementada com Met não induziu instabilidade genômica e não alterou o dano ao DNA induzido pela DXR. Em conclusão, DXR induz depleção de GSH que é inibida pela suplementação com Met. Entretanto, a mesma suplementação não previne a instabilidade genômica induzida pela DXR. A dieta suplementada com Met aumenta a concentração de SAH renal sem alterar a concentração de SAM e GSH. Tanto a dieta suplementada quanto a DXR não induzem hipermetilação na região promotora do gene TP53. / The DNA methylation status is susceptible to changes when organisms are exposed to environmental agents such as food components and drugs. A methionine-rich (Met) diet may modulate S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) concentrations, which could change the DNA methylation status in the promoter region of tumor suppressor genes. Global hipomethylation and gene-specific hipermethylation are involved in genomic instability and it could result in DNA damage. This study intends to evaluate if a Met-rich diet associated with doxorubicin (DXR), an antitumoral drug that induces reactive species, result in changes in the methylation status of the TP53 gene promoter, in the SAM/SAH ratio, in glutathione levels (GSH) and in DNA damage. Forty male Wistar rats were separated into two groups: Met-rich diet (standard chow plus 2% Met), and control diet (standard chow) for six weeks. Each group was subdivided into another two groups that received DXR (1mg/kg) or saline intraperitoneally in the third and sixth weeks of the experiment. The kidneys and the liver were removed for DNA isolation, SAM, SAH and GSH determination, and genomic instability assay. All groups showed the same unmethylated status in the TP53 promoter according to the Combined Bisulfite Restriction Analysis (COBRA). This could be explained by the fact that the methylation index (SAM/SAH ratio) remained unchanged, possibly because of an adaptive Met pathway that maintains SAM levels. GSH depletion did not occur when DXR was associated with the Met-rich diet. As a matter of fact, the Met-rich diet improved GSH concentration in DXR-treated rats. Met-rich diet did not induce genomic instability, and it did not alter DNA damage induced by DXR. In conclusion, DXR induces GSH depletion which is inhibited by Met supplementation. However, Met-rich diet may not prevent genomic instability induced by DXR. A Met-rich diet increases SAH levels; however, it does not change GSH and SAM levels. Neither Met supplementation nor DXR induced DNA hypermethylation in the TP53 gene promoter.
|
13 |
Biochemical and structural characterization of novel drug targets regulating polyamine biosynthesis in the human malaria parasite, Plasmodium falciparumWilliams, Marni 12 July 2011 (has links)
Malaria is prevalent in over 100 countries which is populated by half of the world’s population and culminates in approximately one million deaths per annum, 85% of which occurs in sub-Saharan Africa. The combined resistance of the mosquitoes and parasites to the currently available pesticides and antimalarial chemotherapeutic agents requires the concerted effort of scientists in the malaria field to identify and develop novel mechanisms to curb this deadly disease. In this study, a thorough understanding of the role players in the polyamine pathway of the parasite was obtained, which could aid future studies in the development of novel inhibitory compounds against these validated drug targets. The uniquely bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase (AdoMetDC/ODC) of Plasmodium falciparum forms an important controlling node between the polyamine and methionine metabolic pathways. It has been speculated that the unique bifunctional association of the rate-limiting enzymes allows for the concerted regulation of the respective enzyme activities resulting in polyamine synthesis as per requirement for the rapidly proliferating parasite while the methionine levels are strictly controlled for their role in the methylation status. The results of this study showed that the enzyme activities of the bifunctional complex are indeed coordinated and subtle conformational changes induced by complex formation is suggested to result in these altered kinetics of the individual AdoMetDC and ODC domains. Studies also showed that the identification of the interaction sites between the domains, which allows for communication across the complex, may be targeted for specific interference with the enzyme activities. Furthermore, these studies showed that the current knowledge on the different subclasses of the AdoMetDC family should be re-evaluated since P. falciparum AdoMetDC shows diverse properties from orthologues and therefore points towards a novel grouping of the plasmodial protein. The extensive biochemical and biophysical studies on AdoMetDC has also provided important avenues for the crystallisation and solving of this protein’s 3D structure for subsequent structure-based identification of drug-like lead compounds against AdoMetDC activity. The application of structure-based drug design on malarial proteins was additionally investigated and consequently proved that the rational design of lead inhibitory compounds can provide important scaffold structures for the identification of the key aspects that are required for the successful inhibition of a specific drug target. Spermidine synthase, with its intricate catalytic mechanism involving two substrate binding sites for the products of the reactions catalysed by AdoMetDC/ODC, was used to computationally identify compounds that could bind within its active site. Subsequent testing of the compounds identified with a dynamic receptor-based pharmacophore model showed promising inhibitory results on both recombinant protein and in vitro parasite levels. The confirmation of the predicted interaction sites and identification of aspects to improve inhibitor interaction was subsequently investigated at atomic resolution with X-ray protein crystallography. The outcome of this doctoral study shows the benefit in applying a multidisciplinary and multinational approach for studying drug targets within the malaria parasite, which has led to a thorough understanding of the targets on both biochemical and structural levels for future drug design studies. / Thesis (PhD)--University of Pretoria, 2011. / Biochemistry / unrestricted
|
14 |
Prebiotic photoreduction and polymerization of cysteinyl peptides.Xxx, Anju 11 October 2023 (has links)
Cysteinyl peptides likely played an important role in the prebiotic synthesis of cofactors, such as iron-sulfur clusters. However, cysteinyl peptides must be reduced in order to coordinate iron-sulfur clusters. Mixtures of ferric ions and cysteinyl peptides leads to the reduction of ferric to ferrous ions and the concomitant formation of disulfide bridged, oxidized cysteinyl peptides that are incapable of coordinating an iron-sulfur cluster. Here, we develop a photochemically driven solution to this problem. Lipoic acid (( R )-5-(1,2-dithiolane-3-yl)pentanoic acid), a molecule structurally similar to fatty acids, can be photochemically reduced and can subsequently reduce the oxidized cysteinyl peptides needed for the coordination of an iron-sulfur cluster. Other dithilane ring containing molecules possess similar activity to lipoic acid.
The synthesis of small peptides containing cysteines, such as glutathione and GCG (Gly-Cys-Gly) is easy by both solid phase and solution phase methodologies. However, as the length of the peptide increases, the yield begins to decrease, especially for peptides containing cysteines due to oxidation. One solution could be to exploit a previously uncovered mechanism for the joining of peptides into longer peptides. Such mechanisms, referred to as CPL for catalytic peptide ligation, rely on either thiols or metals as catalysts and peptide nitriles as substrates. Thus far, CPL has only been exploited with non-cysteinyl peptides. In this thesis, we extend CPL to cysteine containing peptides by taking advantage of the templating effects of Zn2+.
Longer peptides with properly spaced cysteines are frequently better able to stabilize iron-sulfur clusters in aqueous solution than shorter peptides. Coordination can either be complete or an open coordination position, filled by solvent, can be used to bind substrate. Two well-known examples of such an arrangement are the radical SAM (S-adenosylmethionine) enzyme and aconitase being an enzyme of the citric acid cycle. We designed and synthesized peptide sequences that could coordinate a [4Fe-4S]2+ cluster with three cysteinyl ligands, leaving an open coordination position. The stability of the [4Fe-4S] cluster was affected by the intermediates of the citric acid cycle. The iron-sulfur can be reconstituted with the long peptidyl sequences from proteins such as SLC25A39 which contains four cysteine ligands to form [2Fe-2S] cluster, which is necessary for glutathione transport from cytosol to mitochondria.
|
15 |
Identification of a putative <i>metK</i> selenite resistance gene in <i>Stenotrophomonas maltophilia</i> OR02Marinelli, Zachary A. January 2017 (has links)
No description available.
|
16 |
The interaction of obesity and age and their effect on adipose tissue metabolism in the mouseLiu, Ke-di January 2019 (has links)
Numerous studies have investigated how bulk lipid metabolism is influenced in obesity and in particular how the composition of triglycerides found in the cytosol change with increased adipocyte expansion. However, in part reflecting the analytical challenge the composition of cell membranes, and in particular glycerophospholipids, an important membrane component, have been seldom investigated. Cell membrane components contribute to a variety of cellular processes including maintaining organelle functionality, providing an optimized environment for numerous proteins and providing important pools for metabolites, such as choline for one-carbon metabolism and S-adenosylmethionine for DNA methylation. Here, I have conducted a comprehensive lipidomic and transcriptomic study of white adipose tissue in mice that become obese either through genetic modification (ob/ob genotype), diet (high-fat diet) or a combination of the two across the life course. Specifically, I demonstrated that the changes in triglyceride metabolism that dominate the overall lipid composition of white adipose tissue were distinct from the compositional changes of glycerophospholipids. These latter lipids became more unsaturated to maintain the fluidity and normal function of the membrane in the initiation of obesity but then turned saturated after long-term administration of HFD and aging. This suggests that while triglycerides within the adipose tissue may be a relatively inert store of lipids, the compositional changes occur in cell membranes with more far-reaching functional consequences in both obesity and aging. The two-phase change of phospholipids can be correlated well with transcriptional and one-carbon metabolic changes within the adipocytes. The transcriptomic study demonstrated that the lipid metabolic pathways regulated by the peroxisome, AMPK, insulin and PPARγ signaling were activated in the initiation of obesity but inhibited in the adipose tissue of old ob/ob mice along with up-regulated inflammation pathways. The brown and white adipose tissue of PPARα-knock-out mice were also studied by lipidomic tools to get a deeper understanding of the effect of the peroxisome and PPAR system on adipose tissue and lipid metabolism during obesity. Most of the lipids were increased and became more saturated and shorter in adipose tissues of PPARα null mice, which is in good accordance with the results of the former animal study. In conclusion, my work using different rodent models and multi-omics techniques demonstrated a protective metabolic mechanism activated in the initiation but impaired at the end of the processes of obesity and aging, which could be an explanation of the similarity of obesity and aging in terms of high incidence of the metabolic syndrome and related diseases.
|
17 |
A Low Vitamin B12 Induced Transcriptional Mechanism That Regulates Metabolic Activity of the Methionine/S-Adenosylmethionine Cycle in Caenorhabditis elegansGiese, Gabrielle E. 06 July 2021 (has links)
Cells must regulate their metabolism in order to grow, adapt to changes in nutrient availability and maintain homeostasis. Flux, or the turnover of metabolites, through the metabolic network can be regulated at the allosteric and transcriptional levels. While study of allosteric regulation is limited to biochemical examination of individual proteins, transcriptional control of metabolism can be explored at a systems level. We endeavored to elucidate transcriptional mechanisms of metabolic flux regulation in the model organism Caenorhabditis elegans (C. elegans). We also worked to create a visual tool to explore metabolic pathways that will support future efforts in the research of metabolic gene regulation. C. elegans is a small, free-living nematode that feeds on bacteria and experiences a high level of diversity in nutrient level and composition. Previously, we identified a mechanism by which the essential cofactor, vitamin B12, regulates the expression of genes involved in the degradation of propionate, referred to as B12‑mechanism‑I. This mechanism functions to prevent the toxic accumulation of propionate and requires the TFs NHR-10 and NHR-68. Using genetic screens as well as transcriptomic and metabolomic approaches, we discover a second mechanism by which vitamin B12 regulates metabolic gene expression: B12-mechanism-II. Unlike B12-mechanism-I, B12-mechanism-II is independent of propionate, requires the transcription factor NHR-114 and functions to maintain the metabolic activity of the Methionine/S-adenosylmethionine cycle in a tightly regulated regime. We also present WormPaths, an online resource that allows visualization of C. elegans metabolic pathways and enables metabolic pathway enrichment of user-uploaded transcriptomic data.
|
18 |
Investigation of Protein/Ligand Interactions Relating Structural Dynamics to Function: Combined Computational and Experimental ApproachesPavlovicz, Ryan Elliott 24 June 2014 (has links)
No description available.
|
19 |
Secondary metabolism and development in the filamentous fungus <i>Aspergillus nidulans</i> - Activation of silent gene clusters and characterization of the SAM synthetase SasA / Sekundärmetabolismus und Entwicklung im filamentösen Pilz <i>Aspergillus nidulans</i> - Aktivierung stiller Gencluster und Charakterisierung der SAM-Synthetase SasAGerke, Jennifer 26 January 2012 (has links)
No description available.
|
20 |
Biochemical and structural studies of 4-hydroxyphenylacetate decarboxylase and its activating enzymeSelvaraj, Brinda 13 October 2014 (has links)
Strikt anaerobe Bakterien wie Clostridium difficile und C. scatologenes verwenden GRE, um die chemisch ungünstige Decarboxylierung von 4-Hydroxyphenylacetat zu p-Cresol zu katalysieren. Das Enzymsystem besteht aus einer Decarboxylase und dem zugehörigen Aktivierungsenzym. Die 4-Hydroxyphenylacetat-Decarboxylase (4Hpad) besitzt zusätzlich zum Protein-basierten Glycinradikal eine weitere Untereinheit mit bis zu zwei [4Fe-4S] Clustern und repräsentiert hierdurch eine neue Klasse von Fe/S-Cluster-haltigen GREs, die aromatische Verbindungen umsetzen. Das Aktivierungsenzym (4Hpad-AE) weicht vom Standardtypus ab, indem es zusätzlich zum S-Adenosylmethionin(SAM)-bindenden [4Fe-4S]-Cluster (RS-Cluster) mindestens einen weiteren [4Fe-4S]-Cluster bindet. In dieser Studie wurden heterologe Expressions- und Reinigungsprotokolle für 4Hpad und 4Hpad-AE entwickelt. Kristallstrukturen von 4Hpad cokristallisiert mit den Substraten (4-Hydroxyphenylacetat, 3,4-Dihydroxyphenylacetat) und dem Inhibitor (4-Hydroxyphenylacetamid) zeigten geringe strukturelle Änderungen im aktiven Zentrum des Proteins. Die Radikalbildung am 4Hpad-AE wurde durch die Überprüfung einer klassischen reduktiven Spaltung von SAM zu den Reaktionsprodukten 5’-Deoxyadenosin und Methionin bestätigt. EPR- und Mössbauer-Spektroskopische Analysen zeigten, dass 4Hpad-AE mindestens einen zusätzlichen [4Fe-4S] Cluster neben dem einzelnen RS-Cluster enthält. Die katalytische Notwendigkeit eines zusätzlichen Clusters wurde durch eine Mutationsanalyse untersucht, wobei eine verkürzte Version des Enzyms ohne die zusätzliche Cystein-reiche Insertion konstruiert wurde. Das verkürzte Mutante ohne die Bindungsmotive für die zusätzlichen Cluster gekennzeichnet, die Konfiguration, Stöchiometrie und die Funktion der zusätzlichen Cluster diagnostizieren. / 4-hydroxyphenylacetate decarboxylase (4Hpad) is a two [4Fe-4S] cluster containing glycyl radical enzyme proposed to use a glycyl/thiyl radical dyad to catalyze the last step of tyrosine fermentation in Clostridium difficile and C. scatologenes by a Kolbe-type decarboxylation. The decarboxylation product p-cresol is a virulence factor of the human pathogen C. difficile. The small subunit of 4Hpad may have a regulatory function with the Fe/S clusters involved in complex formation and radical dissipation in the absence of substrate. The respective activating enzyme (4Hpad-AE) has one or two [4Fe-4S] cluster(s) in addition to the SAM-binding [4Fe-4S] cluster (RS cluster). The role of these auxiliary clusters is still under debate with proposed functions including structural integrity and conduit for electron transfer to the RS cluster. This study shows the optimized expression and purification protocols for the decarboxylase and the co-crystallization experiments and binding studies with 4-hydroxy-phenylacetate and 3,4-dihydroxyphenylacetate and with the inhibitor 4-hydroxy-phenylacetamide. The purification and characterization of active site mutants of decarboxylase are also done. Concerning 4-HPAD-AE, we report on the purification of code-optimized variants, and on spectroscopic and kinetic studies to characterize the respective i) SAM binding enthalpies, ii) rates for reductive cleavage of SAM and iii) putative functions of the additional Fe/S clusters. The truncated mutant lacking the binding motifs for the auxiliary clusters is characterized to diagnose the configuration, stoichiometry and function of the auxiliary clusters.
|
Page generated in 0.0715 seconds