Spelling suggestions: "subject:"SABR model"" "subject:"SABR godel""
1 |
Local and Stochastic Volatility Models: An Investigation into the Pricing of Exotic Equity OptionsMajmin, Lisa 27 October 2006 (has links)
Faculty of Science;
School of Computational and Applied Maths;
MSC Thesis / The assumption of constant volatility as an input parameter into the Black-Scholes option pricing formula is deemed primitive and highly erroneous when one considers the terminal distribution of the log-returns of the underlying process. To account for the `fat tails' of the distribution, we consider
both local and stochastic volatility option pricing models. Each class of models, the former being a special case of the latter, gives rise to a parametrization of the skew, which may or may not re°ect the correct dynamics of the skew. We investigate a select few from each class and derive the results presented in the corresponding papers. We select one from each class, namely the implied trinomial tree (Derman, Kani & Chriss 1996) and the SABR model (Hagan, Kumar, Lesniewski &
Woodward 2002), and calibrate to the implied skew for SAFEX futures. We also obtain prices for both vanilla and exotic equity index options and compare the two approaches.
|
2 |
Building Interest Rate Curves and SABR Model CalibrationMbongo Nkounga, Jeffrey Ted Johnattan 03 1900 (has links)
Thesis (MSc)--Stellenbosch University / ENGLISH ABSTRACT : In this thesis, we first review the traditional pre-credit crunch approach that
considers a single curve to consistently price all instruments. We review the
theoretical pricing framework and introduce pricing formulas for plain vanilla
interest rate derivatives. We then review the curve construction methodologies
(bootstrapping and global methods) to build an interest rate curve using
the instruments described previously as inputs. Second, we extend this work
in the modern post-credit framework. Third, we review the calibration of the
SABR model. Finally we present applications that use interest rate curves and
SABR model: stripping implied volatilities, transforming the market observed
smile (given quotes for standard tenors) to non-standard tenors (or inversely)
and calibrating the market volatility smile coherently with the new market
evidences. / AFRIKAANSE OPSOMMING : Geen Afrikaanse opsomming geskikbaar nie
|
3 |
SABR模型與SABR-LMM模型之實證分析 / Empirical Analysis of SABR Model and SABR-LMM Model毛迦南, Mau,Cha-Nan Unknown Date (has links)
本篇論文驗證SABR模型與SABR-LMM模型的動態設定與市場選擇權價格下標的未來價格之隱含分配是否一致,判斷準則為SABR模型與SABR-LMM模型校準出的參數是否符合市場直覺。根據實證結果答案是肯定的,所以在SABR模型與SABR-LMM模型下評價選擇權不需要再做任何的主觀判斷或調整。此外本篇論文對於SABR模型與SABR-LMM模型的參數校準方法做了詳細的分析,並且清楚的閳述SABR模型與SABR-LMM模型的模型直覺。
|
4 |
臺指選擇權之SABR模型應用與中 國結構型商品評價與分析-以股權連結商品為例 / Analysis of The SABR Model and China Structured Notes康皓翔, Kang, Hao Hsiang Unknown Date (has links)
本篇論文分為兩個部份。第一部份驗證隨機波動度SABR 模型以臺灣證券交易所發行量加權股價指數選擇權為驗證產品所描繪出來的波動度微笑曲線,分析其特色與值得關注的地方。由於長期以來研究者所使用的Black模型評價選擇權公式無法衡量波動度風險;雖然局部波動度模型(Local Volatility Models)能描繪出波動度所形成的波動度微笑曲線(Volatility Smile),其動態走勢卻與標的資產價格相反,兩模型皆與真實情形不符,唯以SABR模型能順利的解決以上問題。
第二部份討論結構型商品。此部份以中國招商銀行發行的股權連結型商品作為範例,進行商品的拆解及評價,並分析其潛在風險,加以進行不同經濟情勢下的情境分析。評價個案為「掛勾香港地產股票人民幣理財計畫產品」,由於此商品連結標的達四個且有提前到期事件,並沒有封閉解。必須以風險中立下股價的動態過程模擬股價,使用蒙地卡羅模擬法來逼近合理價格。此外,亦針對評價結果進行避險參數及收益分析。
|
Page generated in 0.0357 seconds