• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 262
  • 84
  • 36
  • 13
  • 13
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 500
  • 305
  • 296
  • 203
  • 203
  • 113
  • 108
  • 65
  • 58
  • 52
  • 49
  • 45
  • 41
  • 40
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Bedeutung der ACE2-Spaltung durch Wirtszellproteasen für die SARS-Coronavirus-Infektion / Importance of ACE2 cleavage by host cell proteases for the SARS-coronavirus-infection

Heurich, Adeline 14 July 2014 (has links)
Das severe acute respiratory syndrome Coronavirus (SARS-CoV) ist ein hochpathogenes Virus, dessen zoonotischer Eintrag in die Bevölkerung eine substantielle Gesundheitsgefahr darstellt. Die Identifizierung von Wirtszellfaktoren, die für die SARS-CoV-Ausbreitung und Pathogenese wichtig sind, könnte neue Ansatzpunkte für die Therapie liefern. Das SARS-CoV-Oberflächenprotein Spike (S) bindet an den zellulären Rezeptor angiotensin converting Enzyme 2 (ACE2) und vermittelt den viralen Eintritt in Zielzellen. Die Spaltung und Aktivierung des S Proteins durch Wirtszellproteasen ist für den infektiösen, S Protein-vermittelten Zelleintritt von SARS-CoV essentiell. Die Typ II Transmembranserinproteasen (TTSPs) TMPRSS2 und HAT spalten und aktivieren das S Protein, zumindest nach gerichteter Expression in Zelllinien. Ob diese Enzyme in der menschlichen Lunge, den Zielzellen der SARS-CoV-Infektion, exprimiert werden, war jedoch unklar und sollte im Rahmen der vorliegenden Arbeit untersucht werden. TMPRSS2 und HAT spalten auch den viralen Rezeptor ACE2 und es wurde postuliert, dass die ACE2-Spaltung den viralen Eintritt erhöht. Der zugrundeliegende Mechanismus war jedoch nicht bekannt und sollte innerhalb der vorliegenden Arbeit aufgeklärt werden. Es konnte gezeigt werden, dass TMPRSS2 und HAT zusammen mit ACE2 in Epithelzellen des Respirationstrakts exprimiert werden. Die Proteasen könnten daher die Ausbreitung von SARS-CoV im Lungenepithel fördern. Weiterhin wurde eine Aminosäuresequenz in ACE2 identifiziert, die für die Prozessierung durch TMPRSS2 und HAT essentiell ist. Die funktionelle Analyse von ACE2- Mutanten zeigte, dass die Spaltung in diesem Bereich infektionsverstärkend wirkt. Immunfluoreszenz-Studien erbrachten Hinweise darauf, dass die Verstärkung der Infektion auf eine erhöhte Aufnahme von Virus-Partikeln in die Zelle zurückzuführen ist. Schließlich konnte demonstriert werden, dass TMPRSS2 und eine weitere zelluläre Protease, A Disintegrin And Metalloproteinase 17 (ADAM17), um die ACE2-Spaltung konkurrieren und die ADAM17- Spaltstelle in ACE2 konnte kartiert werden. Die ACE2-Spaltung durch ADAM17 war jedoch für den S Protein-getriebenen Zelleintritt verzichtbar. Zusammenfassend zeigen diese Untersuchungen, dass TMPRSS2 und HAT die SARS-CoV-Infektion durch Spaltung von S Protein und Rezeptor fördern. Die Proteasen stellen daher mögliche Angriffspunkte für die antivirale Intervention dar.
172

Identification of interacting partner(s) of SARS-CoV spike glycoprotein.

January 2006 (has links)
Chuck Chi-pang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 138-160). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Abstract --- p.iii / 摘要 --- p.v / Contents --- p.vii / List of Figures --- p.xi / List of Tables --- p.xiii / Abbreviations --- p.xiv / Acknowledgement --- p.xviii / Introduction / Chapter 1. --- Background / Chapter 1.1 --- SARS / Chapter 1.1.1 --- Outbreak and Influence --- p.1 / Chapter 1.1.2 --- Clinical Features --- p.4 / Chapter 1.2 --- SARS-CoV / Chapter 1.2.1 --- Genomic Organization --- p.5 / Chapter 1.2.2 --- Morphology --- p.7 / Chapter 1.2.3 --- Phylogenetic Analysis --- p.9 / Chapter 1.3 --- S Glycoprotein / Chapter 1.3.1 --- Functional Roles --- p.11 / Chapter 1.3.2 --- Structure and Functional Domains --- p.12 / Chapter 1.3.3 --- Interacting Partners --- p.15 / Chapter 1.3.4 --- Viral Entry Mechanism --- p.17 / Chapter 1.4 --- Aim of Study / Chapter 1.4.1 --- Mismatch of SARS-CoV Tissue Tropism and Tissue Distribution of ACE2 --- p.20 / Chapter 1.4.2 --- Presence of Other Interacting Partner(s) --- p.22 / Chapter 1.4.3 --- Significance of the Study Materials and Methods --- p.22 / Chapter 2. --- Plasmid Construction / Chapter 2.1 --- Fragment Design / Chapter 2.1.1 --- Functional Domain Analysis --- p.23 / Chapter 2.1.2 --- Secondary Structure and Burial Region Predictions --- p.24 / Chapter 2.2 --- Vector Amplification / Chapter 2.2.1 --- E. coli Strain DH5a Competent Cell Preparation --- p.30 / Chapter 2.2.2 --- Transformation of E. coli --- p.30 / Chapter 2.2.3 --- Small-scale Vector Amplification --- p.31 / Chapter 2.3 --- Cloning of DNA Fragments into Various Vectors / Chapter 2.3.1 --- Primer Design --- p.32 / Chapter 2.3.2 --- DNA Amplification --- p.35 / Chapter 2.3.3 --- DNA Purification --- p.35 / Chapter 2.3.4 --- "Restriction Enzyme Digestion, Ligation and Transformation" --- p.36 / Chapter 2.3.5 --- Colony PCR --- p.37 / Chapter 2.4 --- DNA Sequence Analysis / Chapter 2.4.1 --- Primer Design --- p.35 / Chapter 2.4.2 --- DNA Amplification and Purification for DNA Sequence Analysis --- p.39 / Chapter 2.4.3 --- Sequence Detection and Result Analysis --- p.40 / Chapter 3. --- "Protein Expression, Purification and Analysis" / Chapter 3.1 --- Protein Expression in E. coli / Chapter 3.1.1 --- Molecular Weight and pI Predictions --- p.41 / Chapter 3.1.2 --- Glycerol Stock Preparation --- p.41 / Chapter 3.1.3 --- Protein Expression Induction --- p.41 / Chapter 3.1.4 --- Protein Extraction --- p.42 / Chapter 3.1.5 --- Affinity Chromatography --- p.42 / Chapter 3.1.6 --- Removal of GroEL --- p.43 / Chapter 3.1.7 --- Protein Solubilization and Refolding --- p.44 / Chapter 3.2 --- Protein Expression in P. pastoris / Chapter 3.2.1 --- Large-scale Plasmid Amplification --- p.46 / Chapter 3.2.2 --- Restriction Enzyme Digestion and Ethanol Precipitation --- p.47 / Chapter 3.2.3 --- Preparation of KM71H Competent Cells --- p.47 / Chapter 3.2.4 --- Electroporation --- p.48 / Chapter 3.2.5 --- Colony PCR --- p.48 / Chapter 3.2.6 --- Protein Expression Induction and Time Course Study --- p.49 / Chapter 3.2.7 --- Deglycosylation --- p.49 / Chapter 3.3 --- Protein Analysis / Chapter 3.3.1 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis --- p.50 / Chapter 3.3.2 --- Western Blotting --- p.50 / Chapter 3.3.3 --- Mass Spectrometry --- p.51 / Chapter 3.3.4 --- N-terminal Sequencing --- p.52 / Chapter 3.3.5 --- Size Exclusion Chromatography --- p.52 / Chapter 4. --- Identification of Interacting Partner(s) / Chapter 4.1 --- VeroE6 Preparation / Chapter 4.1.1 --- Cell Culture --- p.53 / Chapter 4.1.2 --- Protein Extraction and Western Blotting --- p.53 / Chapter 4.2 --- Pull-down Assay --- p.54 / Chapter 4.3 --- Two-dimensional Gel Electrophores --- p.is / Chapter 4.3.1 --- Isoelectric Focusing --- p.56 / Chapter 4.3.2 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis --- p.56 / Chapter 4.3.3 --- Silver Staining --- p.57 / Chapter 4.4 --- Mass Spectrometry / Chapter 4.4.1 --- Destaining --- p.58 / Chapter 4.4.2 --- In-gel Digestion --- p.58 / Chapter 4.4.3 --- Desalting by Zip-tip --- p.59 / Chapter 4.4.4 --- Loading Sample --- p.59 / Chapter 4.4.5 --- Peptide Mass Detection and Data Analysis --- p.59 / Results / Chapter 5. --- S Protein Expression / Chapter 5.1 --- Plasmid Construction --- p.61 / Chapter 5.2 --- Molecular Weight and pi Predictions --- p.63 / Chapter 5.3 --- Protein Expression and Optimization in E. coli / Chapter 5.3.1 --- "Comparison of Expression Levels, Solubility and Purities of S Protein Fragments" --- p.64 / Chapter 5.3.2 --- "Alteration of the Solubility in Various Cell Strains, Expression Conditions and Lysis Buffers" --- p.68 / Chapter 5.3.3 --- Identification and Remove of the non-target proteins --- p.72 / Chapter 5.3.4 --- Unfolding and Refolding --- p.79 / Chapter 5.4 --- Protein Expression and Optimization in P. pastoris / Chapter 5.4.1 --- "Expression Levels, Solubility and Purities of Various S Protein Fragments" --- p.85 / Chapter 5.4.2 --- Characterization of De-N-glycosylated Recombinant Proteins --- p.89 / Chapter 6. --- Identification of Interacting partners / Chapter 6.1 --- Practicability of Pull-down Assay / Chapter 6.1.1 --- ACE2 Extraction --- p.95 / Chapter 6.1.2 --- Pull-down of ACE2 by the P. pastoris-expressed recombinant RBD --- p.96 / Chapter 6.2 --- Pull-down Assay and Two-dimensional Gel Electrophoresis --- p.97 / Chapter 6.3 --- Identification of Putative Interacting Partners by MALDI-TOF-TOF --- p.107 / Chapter 7. --- Discussion / Chapter 7.1 --- S Protein Expression in E. coli / Chapter 7.1.1 --- Improving Recombinant Protein Expression Level and Solubility --- p.114 / Chapter 7.1.2 --- S Recombinant Protein Bound by GroEL --- p.117 / Chapter 7.2 --- S Protein Expression in P. pastoris / Chapter 7.2.1 --- Advantages of Using P. pastoris --- p.119 / Chapter 7.2.2 --- Variation of S Fragment Expression Levels --- p.120 / Chapter 7.2.3 --- Sizes of S Protein Fragments --- p.123 / Chapter 7.3 --- Identification of Interacting Partners / Chapter 7.3.1 --- Relationship between S Protein and Putative Interacting Partners --- p.124 / Chapter 7.3.2 --- Failure of Finding ACE2 --- p.125 / Chapter 7.3.2 --- Difficulty in the Identification of Protein Spots --- p.126 / Chapter 7.4 --- Conclusion --- p.131 / Chapter 7.5 --- Future Perspective --- p.132 / Chapter 8. --- Appendix --- p.133 / Chapter 9. --- References --- p.138
173

Synthetic peptide studies on spike glycoprotein and 3C-like protease of the severe acute respiratory syndrome (SARS) coronavirus: perspective for SARS vaccine and drug development.

January 2005 (has links)
Choy Wai Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 98-122). / Abstracts in English and Chinese. / Thesis committee --- p.i / Statement --- p.ii / Abstract --- p.iii / Acknowledgements --- p.vi / General abbreviations --- p.viii / Abbreviations of chemicals --- p.x / Table of contents --- p.xi / List of figures --- p.xv / List of tables --- p.xviii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Severe acute respiratory syndrome (SARS) - An overview --- p.1 / Chapter 1.1.1 --- Epidemiology of SARS --- p.1 / Chapter 1.1.2 --- Clinical presentation of SARS --- p.2 / Chapter 1.1.3 --- Diagnostic tests of SARS --- p.5 / Chapter 1.1.4 --- Treatment of SARS --- p.7 / Chapter 1.2 --- Severe acute respiratory syndrome coronavirus (SARS- CoV) --- p.8 / Chapter 1.2.1 --- The etiological agent of SARS --- p.8 / Chapter 1.2.2 --- The coronaviruses --- p.9 / Chapter 1.2.3 --- Genome of SARS-CoV --- p.11 / Chapter 1.3 --- Spike (S) glycoprotein of SARS-CoV --- p.14 / Chapter 1.3.1 --- Functions of SARS-CoV S glycoprotein --- p.15 / Chapter 1.3.2 --- Receptors for S glycoprotein of SARS-CoV --- p.17 / Chapter 1.4 --- 3C-like protease (3CLPro) of SARS-CoV --- p.20 / Chapter 1.4.1 --- Extensive proteolytic processing of SARS-CoV replicase polyproteins --- p.20 / Chapter 1.4.2 --- SARS-CoV 3CLPro --- p.21 / Chapter 1.4.3 --- Substrate specificity of SARS-CoV 3CLPro --- p.22 / Chapter 1.5 --- Combating SARS - Vaccine and drug development --- p.24 / Chapter 1.5.1 --- Vaccine development against SARS --- p.24 / Chapter 1.5.2 --- Drug development against SARS --- p.25 / Chapter 1.6 --- Project objectives of this thesis --- p.27 / Chapter 1.6.1 --- Synthetic Peptide Studies on SARS-CoV S glycoprotein --- p.27 / Chapter 1.6.2 --- Synthetic Peptide Studies on SARS-CoV 3CLPro --- p.28 / Chapter 2 --- Materials and Methods --- p.30 / Chapter 2.1 --- Synthetic peptide studies on SARS-CoV S glycoprotein --- p.30 / Chapter 2.1.1 --- Bioinformatics analyses of SARS-CoV S gly- coprotein --- p.30 / Chapter 2.1.2 --- Peptide design and molecular modeling --- p.32 / Chapter 2.1.3 --- Solid phase peptide synthesis (SPPS) --- p.33 / Chapter 2.1.4 --- Peptide conjugation --- p.35 / Chapter 2.1.5 --- Immunization in rabbits and monkeys --- p.36 / Chapter 2.1.6 --- ELISA analysis --- p.37 / Chapter 2.1.7 --- Immunofluorescent confocal microscopy --- p.39 / Chapter 2.2 --- Synthetic peptide studies on SARS-CoV 3CLpro --- p.40 / Chapter 2.2.1 --- Protein expression and purification --- p.40 / Chapter 2.2.2 --- Solid phase peptide synthesis (SPPS) --- p.41 / Chapter 2.2.3 --- Peptide cleavage assay --- p.44 / Chapter 2.2.4 --- Molecular docking --- p.46 / Chapter 3 --- Results --- p.48 / Chapter 3.1 --- Synthetic peptide studies on SARS-CoV S glycoprotein --- p.48 / Chapter 3.1.1 --- General features and structural analyses of the S glycoprotein --- p.48 / Chapter 3.1.2 --- Peptides design and synthesis --- p.53 / Chapter 3.1.3 --- ELISA analysis and immunofluorescent con- focal microscopy --- p.55 / Chapter 3.2 --- Synthetic peptide studies on SARS-CoV 3CLpro --- p.62 / Chapter 3.2.1 --- Substrate specificity of SARS-CoV 3CLPro . . --- p.62 / Chapter 3.2.2 --- Molecular docking of SARS-CoV 3CLPro and peptide substrates --- p.74 / Chapter 4 --- Discussion --- p.78 / Chapter 4.1 --- Synthetic peptide studies on SARS-CoV S glycoprotein --- p.78 / Chapter 4.1.1 --- Synthetic peptides elicited SARS-CoV specific antibodies --- p.78 / Chapter 4.1.2 --- Factors affecting the specificity and antigenic- ity of synthetic peptides --- p.80 / Chapter 4.1.3 --- Next step towards vaccine development --- p.83 / Chapter 4.1.4 --- A synthetic peptide-based approach --- p.84 / Chapter 4.2 --- Synthetic peptide studies on SARS-CoV 3CLpro --- p.86 / Chapter 4.2.1 --- A comprehensive overview of the substrate specificity of SARS-CoV 3CLpro --- p.87 / Chapter 4.2.2 --- Sequence comparison between SARS-CoV 3CLpro cleavage sites --- p.90 / Chapter 4.2.3 --- A rapid and high throughput approach to screen protease substrate specificity --- p.94 / Bibliography --- p.98
174

Complete genome sequencing of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and the functional characterization of the 3a protein. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Coronaviruses are a diverse group of large, single-stranded RNA virus that cause respiratory and enteric diseases in mammalian and avian species. Phylogenetic analysis shows that SARS-CoV is an unique branch of coronavirus showing no close relationship to other groups of coronaviruses. The genome size of SARS-CoV is about 30 kilobase and the genome, like other coronaviruses, is composed of replicase (rep), spike (S), envelope (E), membrane (M) and nucleocapsid (N) and 8 additional unknown open reading frames (ORFs) (ORF 3a, ORF 3b, ORF 6, ORF 7a, ORF 7b, ORF8a, ORF 8b and ORF 9b). The 3a gene, the largest unknown ORF, encodes a viral protein which is predicted to be a transmembrane protein. In this study, we showed that the 3a protein was expressed in SARS patients' lung and intestinal tissues, and it is localized to the endoplasmic reticulum (ER) in 3a-transfected monkey kidney Vero E6 cells. Results from experiments including chromatin condensation, DNA fragmentation and antibody microarray suggest that the 3a protein may trigger apoptosis through a caspase-8-dependent pathway and possibly a PKR-mediated FADD-caspase-8 pathway. Our data show that over-expression of the SARS-CoV protein can induce apoptosis in vitro. / Severe acute respiratory syndrome (SARS), an atypical form of pneumonia, is first recognized in Guangdong Province, China in November 2002 and later spread to Hong Kong in mid February 2003. It is believed that the etiological agent of SARS is a previously unknown coronavirus - SARS-CoV. Over 8,400 cases and 789 deaths were reported to World Health Organization (WHO) from over 28 countries around the world including Hong Kong. Up to now, there are still no efficient antiviral drugs to treat the disease, and the detailed pathology of SARS-CoV infection and the host response to the viral infection are still unknown. During the epidemic, we have done complete genome sequencing for five SARS-CoV isolates and we postulate that at least two SARS-CoV strains with distinct etiological origins exist in the environment during the epidemic. / Law Tit-wan Patrick. / "Aug 2005." / Adviser: Stephen K. W. Tsui. / Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3594. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 156-172). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
175

Gestación en tiempos de pandemia COVID-19. Hospital Nacional Docente Madre Niño San Bartolomé, Lima, Perú / Gestation in times of COVID-19 pandemic. Hospital Nacional Docente Madre Niño San Bartolomé, Lima, Peru

vera, edy, Montenegro Cruz, Justo Ivan, Cruzate Cabrejos, Vicente, Marcelo Pacheco, Humberto, Arce Benitez, Miguel, Pelaez Chomba, Melissa 15 September 2020 (has links)
Introducción. El COVID-19 y la gestación es una nueva intercurrencia en la valoración de riesgos para la atención de la gestante. Desde el inicio de la pandemia en el país, los casos han ido en aumento. El primer caso atendido en el Hospital San Bartolomé fue el 12 de abril. Desde los primeros reportes de gestantes COVID+ en China, a la fecha, se tiene cada vez mayor información, siendo importante para fines del manejo de la gestante COVID+ que se conozca su epidemiología y los resultados perinatales. Objetivo. Determinar la epidemiología y resultados materno perinatales de COVID-19 en las gestantes del Hospital Nacional Docente Madre Niño San Bartolomé, Lima, Perú. Método. Estudio observacional de corte transversal, en los meses de abril a julio 2020. Se incluyó a todas las gestantes que llegaron a la emergencia obstétrica del Hospital San Bartolomé, a las cuales se les realizó una prueba de inmunocromatografía para IgM/IgG, para determinar la seroprevalencia de COVID-19. Las variables obstétricas y perinatales fueron recolectadas en una ficha de datos al ingreso a la emergencia. Resultados. Se realizó prueba rápida para SARS-CoV-19 a 345 gestantes que se hospitalizaron para atención de parto. La edad promedio fue 27 años, con 10% de adolescentes y 16% de mayores de 35 años; 60% tenía 2 a 4 embarazos, 38% de los partos fue vaginal, 15% de ellos pretérmino; 1,2% de las gestantes fue sintomática y 0,2% ingresó a la unidad de cuidados intensivos. El 61% de los recién nacidos pesó entre 2 500 y 3 500 g, 53% fue sexo masculino, 94% tuvo Apgar mayor de 7 al minuto, 3,3% con hisopado positivo dentro de las primeras 24 horas. Se presentaron 3% de óbitos. El 48% de las gestantes provino del Cono Norte de la ciudad de Lima. Conclusiones. Casi 100% de las gestantes fue asintomática y solo 0,2% tuvo complicaciones respiratorias. La culminación del parto por vía cesárea fue baja en relación a otras publicaciones; el motivo de cesárea fue por indicación obstétrica. Escaso número de neonatos tuvo hisopado positivo. Hubo mayor incidencia de óbitos en julio 2020. El mayor porcentaje de pacientes provino del Cono Norte de Lima. / Introduction: COVID-19 and pregnancy is a new intercurrence in risk assessment for the care of the pregnant woman. Since the beginning of the pandemic in the country, cases have been increasing. The first case attended at the San Bartolomé Hospital was on April 12. Since the first reports of COVID+ pregnant women in China, to date, there is more important information on epidemiology and perinatal results for the management of the COVID+ pregnant woman. Objective: To determine the epidemiology and maternal perinatal outcomes of COVID-19 in pregnant women at the Hospital Nacional Docente Madre Niño San Bartolomé, Lima, Peru. Methods: Observational cross-sectional study, from April to July 2020. All the pregnant women who arrived at the obstetric emergency at Hospital San Bartolomé were included, and they underwent an immunochromatography test for IgM / IgG, to determine the seroprevalence of COVID-19. Obstetric and perinatal variables were collected in a data sheet upon admission to the emergency room. Results: Rapid test for SARS-CoV-19 was performed in 345 pregnant women who were hospitalized for delivery care. The average age was 27 years, with 10% adolescents and 16% over 35 years; 60% had 2 to 4 pregnancies, 38% of deliveries were vaginal, 15% of them preterm; 1.2% of the pregnant women were symptomatic and 0.2% were admitted to the intensive care unit. 61% of the newborns weighed between 2 500 and 3 500 g, 53% were male, 94% had an Apgar score greater than 7 at one minute, 3.3% with a positive swab within the first 24 hours. There were 3% fetal deaths. 48% of the pregnant women came from the Northern Cone of the city of Lima. Conclusions: Almost 100% of the pregnant women were asymptomatic and only 0.2% had respiratory complications. The mode of delivery by cesarean section was low in relation to other publications, all had obstetric indication. A small number of neonates had a positive swab. There was a higher incidence of fetal deaths in July 2020. The highest percentage of patients came from the Northern Cone of Lima.
176

COVID-19 v Domově ve Břevnici / SARS-CoV-2 in Care Home Břevnice

Myslivcová, Lenka January 2021 (has links)
The aim of this diploma thesis was to describe information about SARS-CoV-2 virus and coronavirus disease (COVID-19), to evaluate the course of the disease in the Home with a special regime in Břevnice, in which the epidemic took place at the beginning of the first wave of COVID-19 pandemic in spring 2020. Another goal was to perform an antibody analysis and evaluate the obtained data. I divided the diploma thesis into three main parts: theoretical, experimental and discussion. In the theoretical part, I worked with the literature and described information related not only to COVID-19, but also to other serious infections caused by human coronaviruses. In the experimental part, which I performed in the immunological laboratory of the Department of Joint Laboratories at Havlíčkův Brod Hospital, I dealt with the issue of the clinical course of the disease, the severity of the disease and possible consequences after the infection. I also dealt with methods for the determination of antibodies, the principles of which are described in Chapter 4.5. The diagnostic methods and procedures used are described in Chapter 5.3 Laboratory Assays. From the obtained data, I prepared graphs and tables and processed data on the clinical course of the infection in the Břevnice Home, both for the clients and the...
177

Validación y evaluación de una prueba de RT-PCR en tiempo real in house para la detección de SARS-CoV-2 usando un gen específico RdRp y control endógeno GAPDH

Rojas-Serrano, Nancy, Lope-Pari, Priscila, Huaringa-Nuñez, Maribel, Marques Simas, Paulo Vitor, Palacios-Salvatierra, Rosa, Balbuena-Torres, Johanna, Caceres Rey, Omar Alberto, Padilla-Rojas, Carlos 13 December 2021 (has links)
Se validó y evaluó un método de RT-PCR en tiempo real usando cebadores y sondas específicas para los genes RdRP de SARS-CoV-2 y GAPDH de humanos; este último fue usado como control endógeno. Se evaluó la especificidad y sensibilidad; además, se evaluó otros parámetros como la robustez, la repetibilidad, reproducibilidad, comparabilidad y el límite de detección. La sensibilidad, especificidad, los valores predictivos positivo y negativo, la robustez, comparabilidad y la repetibilidad-reproducibilidad de la prueba de RT-PCR en tiempo real dúplex fue de 100%, con un límite de detección de 100 copias/μL, de acuerdo con los criterios de aceptación establecidos para validación del protocolo. Esta prueba estandarizada es una buena alternativa para el diagnóstico de COVID-19; además, la prueba fue aplicada de manera exitosa en personas sospechosas de la enfermedad permitiendo controlar el número de falsos negativos.
178

Expression and characterization of SARS spike and nucleocapsid proteins and their fragments in baculovirus and E.coli. / Expression & characterization of SARS spike and nucleocapsid proteins and their fragments in baculovirus and E.coli

January 2005 (has links)
Wang Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 124-135). / Abstracts in English and Chinese. / Acknowledgements / Abstract / 摘要 / Table of contents / List of figures / List of tables / List of abbreviations / CHAPTER / Chapter 1. --- Introduction / Chapter 1.1 --- Background of SARS and epidemiology / Chapter 1.2 --- SARS symptoms and infected regions / Chapter 1.3 --- SARS virus / Chapter 1.4 --- Treatment for SARS at present / Chapter 1.5 --- Vaccine development is a more effective way to fight against SARS / Chapter 1.6 --- Vaccine candidates / Chapter 1.6.1 --- Truncated S protein as a vaccine candidate / Chapter 1.6.2 --- Full-length N protein as a vaccine candidate / Chapter 1.7 --- E.coli expression system / Chapter 1.8 --- Baculovirus expression system / Chapter 1.8.1 --- Characteristics of baculovirus / Chapter 1.8.2 --- Infection cycle of baculovirus / Chapter 1.8.3 --- Control of viral gene expression in virus-infected cells / Chapter 1.8.4 --- Merits of baculovirus expression system / Chapter 1.9 --- Aim of study / Chapter 2. --- "Bacterial expression and purification of rS1-1000(E), rS401-1000(E) and rN(E)" / Chapter 2.1 --- Introduction / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Reagents for bacterial culture / Chapter 2.2.2 --- Reagents for agarose gel electrophoresis / Chapter 2.2.3 --- 2'-deoxyribonucleoside 5'-triphosphate (dNTP) mix for polymerase chain reaction (PCR) / Chapter 2.2.4 --- Sonication buffer / Chapter 2.2.5 --- Reagents for immobilized metal affinity chromatography (IMAC) purification / Chapter 2.2.6 --- Reagents for gel filtration chromatography / Chapter 2.2.7 --- Reagents for sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) / Chapter 2.2.8 --- Reagents for Western blotting / Chapter 2.3 --- Methods / Chapter 2.3.1 --- General techniques in molecular cloning / Chapter 2.3.2 --- "PCR amplification of the S1-400,S401-1000" / Chapter 2.3.3 --- Construction of clone pET-S 1-400 and PET-s401-1000 / Chapter 2.3.4 --- Construction of clone pAC-N / Chapter 2.3.5 --- Expression / Chapter 2.3.6 --- Inclusion bodies preparation / Chapter 2.3.7 --- Inclusion bodies solubilization using urea / Chapter 2.3.8 --- Protein refolding by rapid dilution and dialysis / Chapter 2.3.9 --- Purification of recombinant protein by nickel ion chelating Sepharose fast flow column (IMAC) / Chapter 2.3.10 --- Gel filtration chromatography for further purification / Chapter 2.3.11 --- Bradford assay for the protein concentration analysis / Chapter 2.3.12 --- Protein analysis / Chapter 2.4 --- Results / Chapter 2.4.1 --- SDS-PAGE analysis of the expressed proteins / Chapter 2.4.2 --- Western blot analysis of the bacterial cell lysate / Chapter 2.4.3 --- Protein purification by IMAC / Chapter 2.4.4 --- Purification of rS401-1000(E) by gel filtration / Chapter 2.4.5 --- Determination of production yield of recombinant fusion proteins / Chapter 2.5 --- Discussion / Chapter 2.5.1 --- Expression vector selected for rS1-400(E) and rS401-1000(E) expression / Chapter 2.5.2 --- Protein expression in E.coli / Chapter 2.5.3 --- Purification process / Chapter 3. --- Baculovirus expression and purification of rS401-1000(ACN) and rN(BMN) protein / Chapter 3.1 --- Introduction / Chapter 3.2 --- Materials / Chapter 3.2.1 --- Reagents for insect cell culture and virus work / Chapter 3.3 --- Methods / Chapter 3.3.1 --- "PCR amplification of N and cloning of S401-1000, N genes into the transfer vector pVL1393" / Chapter 3.3.2 --- Cloning of S401-1000 into transfer vector pFastBac HT B / Chapter 3.3.3 --- Virus works / Chapter 3.3.4 --- Identification of recombinant BmNPV or AcMNPV / Chapter 3.3.5 --- Manipulation of silkworm / Chapter 3.3.6 --- Mouse immunization for polyclonal antibody against rN(E) protein / Chapter 3.4 --- Results / Chapter 3.4.1 --- Expression of rN(BMN) in baculovirus / Chapter 3.4.2 --- Expression of rS401-1000(BMN) and rS401-1000(ACN) in baculovirus / Chapter 3.5 --- Discussion / Chapter 3.5.1 --- The expression level of rN(BMN) in both in vitro and invivo / Chapter 3.5.2 --- The rS401-1000(ACN) protein expression level in vitro / Chapter 3.5.3 --- Failure in generating rS401-1000(BMN) / Chapter 3.5.4 --- Purification process of rN(BMN) by IMAC / Chapter 4. --- "Characterization of recombinant rS1-400(E), rN(E), rN(BMN), rS401_1000(E) and rS401-1000(ACN)" / Chapter 4.1 --- Introduction / Chapter 4.2 --- Materials / Chapter 4.2.1 --- Reagents for enzyme-linked immunosorbent assay (ELISA) / Chapter 4.2.2 --- Reagents for purification of human IgG / Chapter 4.2.3 --- Source and identity of Immune sera / Chapter 4.3 --- Methods / Chapter 4.3.1 --- ELISA / Chapter 4.3.2 --- Purification process of human IgG / Chapter 4.4 --- Results / Chapter 4.4.1 --- Validation of Immune sera using SARS viral lysate / Chapter 4.4.2 --- Immunoreactivities of rS1-400(E) and rN(E) against pooled patients sera and normal human serum / Chapter 4.4.3 --- Immunoreactivity comparison of rN(E) and rN(BMN) / Chapter 4.4.4 --- Comparison of the immunoreactivities of rS401-1000(E) and rS401-1000(ACN) / Chapter 4.4.5 --- Immunoreactivity of SARS related proteins against Anti-SARS Antibody (Equine) / Chapter 4.5 --- Discussion / Chapter 4.5.1 --- Comparison of the immunoreactivities of SARS related proteins expressed in the present study / References
179

Alteration in cellular defense and metabolism in diabetes and virus infections: a proteomic approach. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Cellular defense and metabolism are important biological processes in living cells. In this study, these two biological processes were investigated in two selected disease models: diabetes mellitus (DM) and severe acute respiratory syndrome associated coronavirus (SARS-CoV) infection by two-dimensional gel electrophoresis (2DE) coupled with Matrix-Assisted Laser Desorption Ionisation Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)-based proteomic approaches. The major findings are summarized as follows: / Our results on DM investigation can help to better understand the pathophysiological changes in patients with DM and the pathogenesis of hyperglycemia-caused complications. Data obtained from SARS-CoV studies provided novel insights into the molecular basis of the host cell response upon viral infection. / Protein profile of streptozotocin (STZ)-induced diabetic animal tissues, including mice liver, kidney and eye, and rats sera, indicated that DM has an impaired cellular defense system. These include the impairment in reactive oxygen species scavenging and the impairment in activation of complement system and innate immunity, and the enhancement in blood coagulation reaction. Our results also demonstrated that glycolysis and gluconeogenesis did not alter significantly in the liver of STZ-diabetic mice, while fatty acid oxidation and TCA cycle were attenuated under the same conditions. Moreover, we also detected other abnormal metabolism in aldehyde and amino acid, especially glutamate metabolism and the urea cycle. Abnormalities were also detected in lipid transport and metabolism. Besides, protein profile of mouse liver c37 cells indicated that high glucose may induce apoptosis in these cells, and this apoptotic effect may be mediated via the mitochondrial pathway. Furthermore, the proteomic results from the in vivo and in vitro diabetic models have prompted us to look for glucose responsive element on the promoters of these up-regulated hepatic genes. We found that the mouse aldolase 2 gene has glucose responsiveness in c37 cells treated with high glucose by semi-quantitative RT-PCR and promoter transfection assay. Finally, protein profile of Vero E6 cells strongly implicated that SARS-CoV can induce anti-apoptosis. This effect may be mediated via the mitochondrial pathway. Our data also suggested that the anti-apoptotic activity may be required for viral replication at the early stage of infection. While under the condition of long-term infection, this may be needed for viral survival. / Zhong Mingqi. / "October 2005." / Advisers: Sai Ming Ngai; Hon Ki Cheng. / Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6217. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 223-248). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
180

Contact tracing in Health-Care Information System : with SARS as a case study / With SARS as a case study

Leong, Kan Ion January 2009 (has links)
University of Macau / Faculty of Science and Technology / Department of Computer and Information Science

Page generated in 0.035 seconds