451 |
Next Generation Nanosatellite Systems: Mechanical Analysis and TestLigori, Michael C. 14 December 2011 (has links)
The Canadian Nanosatellite Advanced Propulsion System is the second generation cold-gas propulsion system. Its purpose is to provide the millinewton thrust required for formation control of nanosatellites, in particular the CanX-4/-5 formation flying mission. Additionally, to inject nanosatellites into orbit, a reliable and robust deployer is needed to bridge the gap between the launch vehicle and space. This bridge is the XPOD, the eXoadaptable PyrOless Deployer. Both of these technologies are designed and developed by the Space Flight Lab.
This thesis describes the assembly, integration and preliminary testing of the CanX-4/-5 propulsion system. Emphasis is placed on the phases involved with the assembly and integration while highlighting the problems encountered and lessons learned. In addition, the mechanical analysis of the XPOD as well as its assembly and testing is described in detail.
|
452 |
Satellite Remote Sensing of Mid-level CloudsJin, Hongchun 1980- 14 March 2013 (has links)
This dissertation aims to study the mid-level clouds using satellite observations. It consists of two major parts: characteristics (including cloud top/base heights, cloud top pressure and temperature, and cloud thickness) and thermodynamic phase of mid-level clouds. Each part devotes to a particular issue of significant importance for satellite-based remote sensing of mid-level clouds.
The first part of this dissertation focuses on the impacts of three definitions of the mid-level clouds based on cloud top pressure, cloud top height, and cloud base height on mid-level cloud characteristics. The impacts of multi-layer clouds on satellite-based global statistics of clouds at different levels, particularly for mid- level clouds, are demonstrated. Mid-level clouds are found to occur more frequently than underlying upper-level clouds. Comparisons of cloud amounts between a merged CALIPSO, CloudSat, CERES, and MODIS (CCCM) dataset and International Satellite Cloud Climatology Project (ISCCP) climatology are made between July 2006 and December 2009. Midlevel cloud characteristics are shown to be sensitive to perturbations in midlevel boundary pressures and heights.
The second part focuses on the thermodynamic phase of mid-level clouds. A new algorithm to detect cloud phase using Atmospheric Infrared Sounder (AIRS) high spectral measurements is introduced. The AIRS phase algorithm is based on the newly developed High-spectral-resolution cloudy-sky Radiative Transfer Model (HRTM). The AIRS phase algorithm is evaluated using the CALIPSO cloud phase products for single-layer, heterogeneous, and multi-layer scenes. The AIRS phase algorithm has excellent performance (>90%) in detecting ice clouds compared to the CALIPSO ice clouds. It is capable of detecting optically thin ice clouds in tropics and clouds in the mid-temperature range. Thermodynamic phase of mid-level clouds are investigated using the spatially collocated AIRS phase and CALIPSO phase products between December 2007 and November 2008. Overall, the statistics show that ice, liquid water, and mixed-phase of the mid-level clouds are approximately 20%, 40%, and 40%, globally.
|
453 |
Optical and radar remotely sensed data for large-area wildlife habitat mappingWang, Kai 21 July 2011
Wildlife habitat mapping strongly supports applications in natural resource management, environmental conservation, impacts of anthropogenic activity, perturbed ecosystem restoration, species-at-risk recovery and species inventory. Remote sensing has long been identified as a feasible and effective technology for large-area wildlife habitat mapping. However, existing and future uncertainties in remote sensing will definitely have a significant effect on relevant scientific research, such as the limitation of Landsat-series data; the negative impact of cloud and cloud shadows (CCS) in optical imagery; and landscape pattern analysis using remote sensing classification products. This thesis adopted a manuscript-style format; it addresses these challenges (or uncertainties) and opportunities through exploring the state-of-the-art optical and radar remotely sensed data for large-area wildlife habitat mapping, and investigating their feasibility and applicability primarily by comparison either on the level of direct remote sensing products (e.g. classification accuracy) or indirect ecological model (e.g. presence/absence and frequency of use model based on landscape pattern analysis). A framework designed to identify and investigate the potential remotely sensed data, including Disaster Monitoring Constellation (DMC), Landsat Thematic Mapper (TM), Indian Remote Sensing (IRS), and RADARSAT-2, has been developed. The chosen DMC and RADARSAT-2 imagery have acceptable capability of addressing the existing and potential challenges (or uncertainties) in remote sensing of large-area habitat mapping, in order to produce cloud-free thematic maps for the study of wildlife habitat. A quantitative comparison between Landsat-based and IRS-based analyses showed that the characteristics of remote sensing products play an important role in landscape pattern analysis to build grizzly bear presence/absence and frequency of use models.
|
454 |
Comparing Remote Sounding Measurements of a Variable StratosphereToohey, Matthew 23 February 2010 (has links)
The measurement of trace gases through remote sounding techniques has led to a better understanding of the processes controlling the structure and variability of the stratosphere. Differences between measurements over space and time are due to atmospheric variability and instrument errors: thus, comparison of measurements can be used to test our knowledge of both.
Comparisons of measurements over long time periods are used to identify trends. Balloon-borne infrared emission radiometer instruments have been used to make measurements of midlatitude stratospheric HNO3 spanning a period of twelve years. The timing of the measurements is notable, since they occur before and well after the eruption of Mt. Pinatubo, which significantly perturbed HNO3 levels, complicating prior trend analyses. No significant differences are found between the HNO3 retrievals, although large measurement uncertainties preclude any conclusion concerning trends.
Comparisons of measurements that are closely spaced in space and time are useful for satellite validation, where one aims to reduce the effect of atmospheric variability on the estimation of systematic and random errors. A novel technique for the estimation of systematic error, which differentiates between additive and multiplicative bias, is introduced. In a comparison of measurements by the ACE-FTS and Aura MLS instruments, significant multiplicative biases are identified and described.
In order to validate the reported random errors (RREs) of measurements, satellite validation studies often focus on measurements in the tropical stratosphere, where variability is weak. The scatter in tropical measurements can then be used as an upper limit on instrument precision. In an analysis of tropical measurements by the ACE-FTS, scatter is found to be roughly consistent with the RREs for H2O and CO. The scatter in measurements of O3, HNO3, and N2O, while larger than the reported random errors, is roughly consistent with the variability simulated in the Canadian Middle Atmosphere Model. This work implies that the random error of the ACE-FTS measurements is smaller than the weak natural variability of the tropical stratosphere.
|
455 |
The impact of stretch, exercise and drug treatments on structure, function and satellite cell activation in aging muscleLeiter, Jeffrey Robert Scott 02 April 2009 (has links)
Age-related muscle atrophy and the importance of satellite cells in muscle maintenance, growth and repair led us to examine the effects of mechanical stretch, nitric oxide (NO), and age on satellite cell (SC) activation and gene expression in normal young and old mice. Baseline variables (body mass, muscle mass, fiber cross-sectional area (CSA), muscle strength, SC population, stretch activation and gene expression) were obtained from normal C57BL/6 mice at 3-, 8-, 12- and 18-months-of-age. Activation was assayed by 3H-thymidine incorporation into extensor digitorum longus (EDL) muscles isolated for culture. In a second experiment, muscle from 8- and 18-month-old mice was treated with one or more of: stretch; NO-donors (L-Arginine (LA), isosorbide dinitrate (ISDN)) and; Nω-nitro-L-Arginine methyl ester (LN). EDL muscles from 6-month-old mice required a greater stretch stimulus (20% vs. 10% length increase) than EDL from younger mice to increase SC activation. Stretch did not increase SC activation in mice older than 6 months-of-age. NO supplementation from an exogenous source (ISDN) increased SC activation by stretch in 8- but not 18-mo-old EDLs. In a third experiment, 8- and 18-month-old mice were subjected to 3 weeks of voluntary wheel running, or not. The EDL, tibialis anterior (TA), gastrocnemius (GAST) and quadriceps (QUAD) muscles were selected for analysis following sacrifice. The QUAD muscle from 8-month-old mice was the only muscle that demonstrated an exercise-induced increase in SC activation, elevated expression of neuronal nitric oxide synthase (NOS-I) and downregulation of myostatin, a gene that inhibits muscle growth. These results suggest mechanical stimulation of satellite cells and regulation of gene expression that controls muscle growth in voluntary contractile tissue is muscle-specific and age-dependent. / May 2009
|
456 |
Genome-Wide Studies on the Molecular Functions of Pax7 in Adult Muscle Satellite CellsPunch, Vincent 01 June 2011 (has links)
Pax3 and Pax7 belong to a family of conserved transcription factors that play important and diverse roles in development. In the embryo, they carry out similar roles in neural and somite development, but Pax7 fails to compensate for critical functions of Pax3 in the development of limb musculature. Conversely, in the adult, Pax7 is necessary for the maintenance and survival of muscle satellite cells, whereas Pax3 cannot effectively fulfill these roles in the absence of Pax7.
To identify the unique roles of Pax7 in adult muscle cells, we have analyzed global binding of Pax3 and Pax7 by ChIP-Seq. Here, we show that despite highly homologous DNA-binding domains, the majority of binding sites are uniquely recognized by Pax7 and are enriched for homeobox motifs. Genes proximal to conserved, unique Pax7 binding sites cluster into specific functional groups which may reflect the unique biological roles of Pax7. Combining Pax7 binding sites with gene expression data, we describe the regulatory networks directed by Pax7 and show that Pax7 binding is associated with positive gene regulation. Moreover, we show Myf5 is a direct target of Pax7 and identify a novel binding site in the satellite cell control region upstream of Myf5.
|
457 |
C/EBPbeta is a Negative Regulator of Skeletal Muscle DifferentiationLi, Grace T.Y. 20 July 2011 (has links)
C/EBPβ is a bZIP transcription factor known to be involved in various physiological processes, including adipogenesis, osteogenesis and liver development. Previous studies in this laboratory revealed an inhibition of myogenesis and reduced myogenic protein expression in 5-azacytidine treated mesenchymal stem cells retrovirally transduced to overexpress C/EBPβ. The goal of this thesis was to evaluate the role of C/EBPβ in myogenic differentiation by overexpression in C2C12 myoblasts and primary myoblasts. We demonstrate reduced MyoD protein expression and subsequent downregulation of myogenic proteins during differentiation following C/EBPβ overexpression. We localized C/EBPβ to the quiescent Pax7+ satellite cells associated with the muscle fiber. Upon satellite cell activation, we observed the downregulation of C/EBPβ protein expression prior to MyoD protein expression. Furthermore, the re-expression of C/EBPβ correlated with the loss of MyoD expression later in differentiation. Histological analysis of C/EBPβ-/- mice revealed smaller fibers and a reduced Pax7+ satellite cell population as compared to control animals. In this thesis, we propose that C/EBPβ is a negative regulator of skeletal muscle differentiation by inhibiting the expression of MyoD, thus impairing proper progression through the myogenic program. In addition, we propose a role for C/EBPβ in the maintenance of undifferentiatied satellite cells.
|
458 |
Congestion Control for Adaptive Satellite Communication Systems with Intelligent SystemsVallamsundar, Banupriya January 2007 (has links)
With the advent of life critical and real-time services such as remote operations over satellite, e-health etc, providing the guaranteed minimum level of services at every ground terminal of the satellite communication system has gained utmost priority. Ground terminals and the hub are not equipped with the required intelligence to predict and react to inclement and dynamic weather conditions on its own. The focus of this thesis is to develop intelligent algorithms that would aid in adaptive management of the quality of service at the ground terminal and the gateway level. This is done to adapt both the ground terminal and gateway to changing weather conditions and to attempt to maintain a steady throughput level and Quality of Service (QoS) requirements on queue delay, jitter, and probability of loss of packets.
The existing satellite system employs the First-In-First-Out routing algorithm to control congestion in their networks. This mechanism is not equipped with adequate ability to contend with changing link capacities, a common result due to bad weather and faults and to provide different levels of prioritized service to the customers that satisfies QoS requirements. This research proposes to use the reported strength of fuzzy logic in controlling highly non-linear and complex system such as the satellite communication network. The proposed fuzzy based model when integrated into the satellite gateway provides the needed robustness to the ground terminals to comprehend with varying levels of traffic and dynamic impacts of weather.
|
459 |
Optical and Microwave Beamforming for Phased Array AntennasFakharzadeh Jahromi, Mohammad 24 November 2008 (has links)
Phased array antenna has been used for a variety of military and civil applications, over the past five decades. Being structurally conformal and flexible, phased array antenna is highly suitable for
mobile applications. Besides, it can form the agile or shaped beams required for interference cancellation or multifunction systems. Moreover, the spatial power combination property increases the
effective radiated power of a transmitter phased array system. Similarly, in a receiver phased array, beamforming increases the signal to noise ratio by coherent integration of the desired signals.
Despite its impressive potentials and properties, phased array antenna has not become a commercial product yet. Cost and complexity of phased array antenna are beyond the scales of consumer electronics devices. Furthermore, calibration is an essential requirement of such a complex system, which is a fairly time-consuming process and requires skilled man power. Moreover, the narrow bandwidth of microwave components degrades the broadband performance of phased array system. Finally, the majority of the beamforming algorithms developed so far have preconditions, which
make them unsuitable for a low-cost system.
The objective of this thesis is to provide a novel cost-effective solution to minimize the system complexity of the future intelligent antenna systems, without sacrificing the performance. This research demonstrates that a powerful, robust beamforming algorithm, integrated in an efficient single-receiver architecture, constitutes the essence of a low-cost phased array antenna. Thus, a novel beamforming technique, called Zero-knowledge algorithm is
developed. It is investigated, both theoretically and experimentally, that the proposed algorithm can compensate for the
hardware errors and imperfections of the low-cost components of the system.
Zero-knowledge beamforming algorithm possesses significant properties. Neither a priori knowledge of the incoming signal
direction, nor the exact characteristics of the phase control network are required in this method. Proper adjustment of the
parameters, makes this algorithm appropriate for mobile systems, particularly those installed on vehicles. The algorithm alleviates the drawbacks of analog phase shifters, such as imbalanced insertion
loss and fabrication tolerances. Furthermore, this algorithm can serve as the core of a direction-of-arrival estimation technique, which senses the minor deflections of the array heading.
For broadband applications optical delay lines must be used in the phase control network of the phased array systems, which are costly. Nevertheless, employing miniaturized delay lines can significantly
reduce the device area, and consequently, the fabrication cost. Thus, in this research four types of miniaturized optical delay
lines, designed in slow-wave structures, are analyzed, which can provide a large delay per length. In addition, two novel optical
beamforming techniques, based upon the properties of Zero-knowledge algorithm, are developed for transmitter and receiver phased arrays.
|
460 |
Chlorine, Fluorine and Water in the Stratosphere: Chemistry, Transport and Trends based on ACE-FTS measurementsNassar, Raymond January 2006 (has links)
The Atmospheric Chemistry Experiment (ACE) is a satellite mission for remote sensing of the Earth's atmosphere using the solar occultation technique. The primary instrument on this satellite is the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). ACE-FTS retrievals are described with a focus on the creation of <em>a priori</em> temperature and pressure profiles. ACE-FTS measurements are then used to investigate the chemistry, transport and trends of chlorine, fluorine and water in the stratosphere, leading to an improved understanding of processes affecting both stratospheric ozone depletion and global climate change. <br /><br /> Total chlorine (Cl<sub>TOT</sub>) in the stratosphere is determined using ACE-FTS measurements of eleven chlorine-containing species, supplemented by both other measurements and models, to determine Cl<sub>TOT</sub> as a function of altitude in five latitude zones. All resulting Cl<sub>TOT</sub> profiles are nearly linear, with a slight slope. Mean Cl<sub>TOT</sub> for 2004 is determined to be 3. 65 ppbv for both the northern and southern midlatitudes (with a precision and estimated accuracy of ±0. 09 and ±0. 13 ppbv, respectively). A slightly lower value of mean Cl<sub>TOT</sub> is determined for the tropics and slightly higher values at high latitudes. Total fluorine (F<sub>TOT</sub>) in the stratosphere is also determined primarily from ACE-FTS measurements using a similar approach, resulting in stratospheric F<sub>TOT</sub> profiles which are nearly linear with mean values ranging from 2. 50 to 2. 59 ppbv for each latitude zone (with a precision of 0. 04-0. 07 ppbv and an estimated accuracy of 0. 15 ppbv). The observed slopes and pattern of latitudinal variation are evidence of the beginning of a decline in global stratospheric chlorine and of the continuing increase in global stratospheric fluorine levels. <br /><br /> The abundance of water in the stratosphere is investigated for the northern hemisphere midlatitudes in 2004 using ACE-FTS measurements. Potential water is determined as [H<sub>2</sub>O]+2[CH<sub>4</sub>] and from [H<sub>2</sub>O] versus [CH<sub>4</sub>] correlations, resulting in a value of 7. 14±0. 05 ppmv, which is used to determine a value of 3. 65±0. 15 ppmv for the mean abundance of water entering the stratosphere. Both values are compared directly with historical data from the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument (1985-1994) and show a negligible change, implying that the increases observed by ATMOS and other long-term measurements from that time period have not continued. <br /><br /> The removal of stratospheric water in the Arctic vortex is investigated using ACE-FTS measurements. Using derived quantities from a meteorological data assimilation, northern hemisphere occultations from early 2004 are classified as vortex, vortex edge or extravortex. [CH<sub>4</sub>] versus [N<sub>2</sub>O] correlations are used to further classify the extravortex occultations as tropical, subtropical or midlatitude. Comparisons between profiles of [N<sub>2</sub>O], [CH<sub>4</sub>] and [H<sub>2</sub>O] inside and outside the Arctic vortex, give estimates of upper stratospheric and lower mesospheric descent rates, indicating that descent in the winter 2004 Arctic vortex was rapid, with evidence of descent at higher altitudes than in past years. <br /><br /> The dehydration of air in the tropical tropopause layer and mechanisms for the entry of water vapor into the stratosphere are investigated by an analysis of ACE-FTS profiles of temperature, water vapor and [HDO]/[H<sub>2</sub>O]. Month-to-month comparisons for 2004 and 2005 reveal a clear pattern of seasonal variation and a correlation between minimum temperature and maximum HDO depletion. Further interpretation indicates that the gradual dehydration mechanism accompanied by lofting of ice particles in the tropical troposphere is the most likely explanation for the observed seasonal variation and the shape of the [HDO]/[H<sub>2</sub>O] profiles.
|
Page generated in 0.0288 seconds