• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 684
  • 132
  • 93
  • 71
  • 57
  • 29
  • 29
  • 29
  • 29
  • 29
  • 29
  • 9
  • 7
  • 5
  • 5
  • Tagged with
  • 1269
  • 568
  • 187
  • 178
  • 143
  • 127
  • 127
  • 113
  • 111
  • 94
  • 92
  • 85
  • 78
  • 74
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Analytic Scattering and Refraction Models for Exoplanet Transit Spectra

Robinson, Tyler D., Fortney, Jonathan J., Hubbard, William B. 27 November 2017 (has links)
Observations of exoplanet transit spectra are essential to understanding the physics and chemistry of distant worlds. The effects of opacity sources and many physical processes combine to set the shape of a transit spectrum. Two such key processes-refraction and cloud and/or haze forward-scattering-have seen substantial recent study. However, models of these processes are typically complex, which prevents their incorporation into observational analyses and standard transit spectrum tools. In this work, we develop analytic expressions that allow for the efficient parameterization of forward-scattering and refraction effects in transit spectra. We derive an effective slant optical depth that includes a correction for forward-scattered light, and present an analytic form of this correction. We validate our correction against a full-physics transit spectrum model that includes scattering, and we explore the extent to which the omission of forward-scattering effects may bias models. Also, we verify a common analytic expression for the location of a refractive boundary, which we express in terms of the maximum pressure probed in a transit spectrum. This expression is designed to be easily incorporated into existing tools, and we discuss how the detection of a refractive boundary could help indicate the background atmospheric composition by constraining the bulk refractivity of the atmosphere. Finally, we show that opacity from Rayleigh scattering and collision-induced absorption will outweigh the effects of refraction for Jupiter-like atmospheres whose equilibrium temperatures are above 400-500 K.
442

Validação dos dados do satélite CALIPSO utilizando um sistema lidar de retroespalhamento elástico e o fotômetro solar da rede AERONET / CALIPSO satellite validation using an elastic backscattering lidar system and the AERONET sunphotometer data

LOPES, FABIO J. da S. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:33:39Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:37Z (GMT). No. of bitstreams: 0 / Os aerossóis e nuvens desenvolvem um papel muito importante nos processos climáticos terrestres por meio das suas contribuições diretas e indiretas no balanço radiativo da atmosfera. A dificuldade na previsão dos processos de mudanças climáticas estão associadas às incertezas na distribuição e propriedades dos aerossóis e nuvens, assim como em suas interações em escala global. Tendo como principal objetivo desenvolver estudos que ajudem na diminuição dessas incertezas, a NASA, em parceria com a agência espacial francesa CNES, desenvolveu a missão do Satélite CALIPSO, que possui a bordo um sistema Lidar denominado CALIOP capaz de estudar o perfil e a distribuição vertical dos aerossóis e nuvens e os processos de interação entre eles. Uma vez que as propriedade ópticas medidas pelo CALIOP são recuperadas utilizando um complexo conjunto de algoritmos, torna-se necessário o desenvolvimento de estudos e metodologias de validação para inferir qual a acurácia das medidas desse sistema. Nesse contexto, foi desenvolvida uma metodologia de avaliação e validação dos valores de Razão Lidar utilizados a priori pelos algoritmos do CALIOP utilizando dois instrumentos de sensoriamento remoto instalados em solo, um sistema Lidar de retroespalhamento elástico instalado no IPEN - São Paulo e o fotômetro solar da rede AERONET instalado em cinco diferentes localidades, Rio Branco - Acre (RB), Alta Floresta - Mato Grosso (AF), Cuiabá - Mato Grosso (CB), Campo Grande - Mato Grosso do Sul (CG) e São Paulo - São Paulo (SP). Foram determinados os dias de medidas correlativas entre os sistemas em solo e o CALIOP e analisados os dados para os dias de medidas com condições livre de nuvens e com trajetórias de massas de ar se deslocando das regiões de medidas do satélite para as regiões de medidas pelos instrumentos fixos. Foram calculados novos valores de Razão Lidar obtidos pelo Modelo Aeronet/Caliop (Modelo A/C) proposto. Esses valores mostraram-se coerentes com aqueles utilizados inicialmente pelo algoritmo do sistema CALIOP. Realizando uma comparação quantitativa, obteve-se uma diferença percentual de 2,17 ± 30,12%, esse valor mostra-se compatível com outros valores obtidos na literatura de validação desse sistema Lidar a bordo do Satélite CALIPSO. Essa subestimação nos valores de Razão Lidar utilizados pelo CALIOP pode estar ocorrendo devido um problema no processo de calibração dos dados do sistema CALIOP, uma vez que o território brasileiro se encontra na região da Anomalia do Atlântico Sul (SAA). A diferença percentual dos valores de Razão Lidar utilizados pelo CALIOP com aqueles obtido por meio de medidas com o sistema Lidar do IPEN forneceram valores de 2,34 ± 17,53%, demonstrando que o modelo de validação proposto é aceitável e acurácia nos valores de Razão Lidar utilizados a priori pelo CALIOP está dentro das margens de incerteza de 30%. / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
443

Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

Lavvas, P., Koskinen, T. 20 September 2017 (has links)
We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of a clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (similar to nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b's atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.
444

Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances

Wilson, Robert F., Teske, Johanna, Majewski, Steven R., Cunha, Katia, Smith, Verne, Souto, Diogo, Bender, Chad, Mahadevan, Suvrath, Troup, Nicholas, Prieto, Carlos Allende, Stassun, Keivan G., Skrutskie, Michael F., Almeida, Andrés, García-Hernández, D. A., Zamora, Olga, Brinkmann, Jonathan 17 January 2018 (has links)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed similar to 600 transiting exoplanets and exoplanet candidates from Kepler (Kepler Objects of Interest, KOIs), most with >= 18 epochs. The combined multi-epoch spectra are of high signal-to-noise ratio (typically >= 100) and yield precise stellar parameters and chemical abundances. We first confirm the ability of the APOGEE abundance pipeline, ASPCAP, to derive reliable [Fe/H] and effective temperatures for FGK dwarf stars-the primary Kepler host stellar type-by comparing the ASPCAP-derived stellar parameters with those from independent high-resolution spectroscopic characterizations for 221 dwarf stars in the literature. With a sample of 282 close-in (P < 100 days) KOIs observed in the APOGEE KOI goal program, we find a correlation between orbital period and host star [Fe/H] characterized by a critical period, P-crit = 8.3(-4.1)(+0.1) days, below which small exoplanets orbit statistically more metal-enriched host stars. This effect may trace a metallicity dependence of the protoplanetary disk inner radius at the time of planet formation or may be a result of rocky planet ingestion driven by inward planetary migration. We also consider that this may trace a metallicity dependence of the dust sublimation radius, but we find no statistically significant correlation with host T-eff and orbital period to support such a claim.
445

Band sharing and satellite diversity techniques for CDMA

Attia, Tarek January 2001 (has links)
High levels of interference between satellite constellation systems, fading and shadowing are a major problem for the successful performance of communication systems using the allocated L/S frequency bands for Non-Geostationary Earth Orbit (NGEO) satellites. As free spectrum is nonexistent, new systems wishing to operate in this band must co-exist with other users, both satellite and terrestrial. This research is mainly concerned with two subjects. Firstly, band sharing between different systems Code Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) has been evaluated for maximizing capacity and optimising efficiency of using the spectrum available. For the case of widened channel bandwidth of the CDMA channel, the overlapping was tested under different degrees of channel overlap and different orders of filters. The best result shows that at the optimum degree of channel overlap, capacity increases by up to 21%. For the case of fixed channel bandwidth, the optimum overlapping between CDMA systems depends on the filtering Roll-off factor and achieves an improvement of the spectrum efficiency of up to 13.4%. Also, for a number of narrowband signal users sharing a CDMA channel, the best location of narrowband signals to share spectrum with a CDMA system was found to be at the edge of the CDMA channel. Simulation models have been constructed and developed which show the combination of DS- CDMA techniques, forward error correction (FEC) code techniques and satellite diversity with Rake receiver for improving performance of interference, fading and shadowing under different environments. Voice activity factor has been considered to reduce the effect of multiple access interference (MAI). The results have shown that satellite diversity has a significant effect on the system performance and satellite diversity gain achieves an improvement up to 6dB. Further improvements have been achieved by including concatenated codes to provide different BER for different services. Sharing the frequency band between a number of Low Earth Orbit (LEO) satellite constellation systems is feasible and very useful but only for a limited number of LEOS satellite CDMA based constellations. Furthermore, satellite diversity is an essential factor to achieve a satisfactory level of service availability, especially for urban and suburban environments.
446

Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

Pinilla, P., Pohl, A., Stammler, S. M., Birnstiel, T. 11 August 2017 (has links)
Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 mu m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold, which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H2O, CO2, and NH3. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H2O and CO2 (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.
447

A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

Zhou, Yifan, Apai, Dániel, Lew, Ben W. P., Schneider, Glenn 04 May 2017 (has links)
The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as. brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (similar to 40 visits) of WFC3 observations. and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need. to. be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.
448

λ = 2.4 to 5 μm spectroscopy with the James Webb Space Telescope NIRCam instrument

Greene, Thomas P., Kelly, Douglas M., Stansberry, John, Leisenring, Jarron, Egami, Eiichi, Schlawin, Everett, Chu, Laurie, Hodapp, Klaus W., Rieke, Marcia 17 July 2017 (has links)
The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.'2 x 2.'2 fields of view that can be observed with either imaging or spectroscopic modes. Either of two R similar to 1500 grisms with orthogonal dispersion directions can be used for slitless spectroscopy over lambda = 2.4 to 5.0 mu m in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We describe the design drivers and parameters of the grisms and present the latest predicted spectroscopic sensitivities, saturation limits, resolving powers, and wavelength coverage values. Simultaneous short wavelength (0.6 to 2.3 mu m) imaging observations of the 2.4 to 5.0 mu m spectroscopic field can be performed in one of several different filter bands, either infocus or defocused via weak lenses internal to the NIRCam. The grisms are available for single-object time-series spectroscopy and wide-field multiobject slitless spectroscopy modes in the first cycle of JWST observations. We present and discuss operational considerations including subarray sizes and data volume limits. Potential scientific uses of the grisms are illustrated with simulated observations of deep extragalactic fields, dark clouds, and transiting exoplanets. Information needed to plan observations using these spectroscopic modes is also provided. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
449

The extraction of landslides in a satellite image using a digital elevation model

Donahue, John Patrick January 1987 (has links)
Landslides in the landscape exhibit predictable properties of shape, structure and orientation. These properties are reflected to varying degrees in their depiction in a satellite image. Landslides can be isolated along with similar objects in a digital image using differential and template operators. Extraction of the landslide features from these images can proceed using a logic-based model which draws on an appropriate object definition approximating the depiction of the landslides in an edge-operated image and a digital elevation model. An object extraction algorithm based on these concepts is used in repeated trials to ascertain the effectiveness of this automated approach. A low resolution linear object definition (Fischler et al. , 1981) is used to isolate candidate pixel segments in three enhanced images. These segments are classified as landslides or non-landslides according to their image pixel intensity, length, slope, and orientation. Digital elevation data is used to evaluate slope and orientation criteria. Results are compared to an inventory of landslides made using aerial photographs. Study results indicate that 17% to 28% of landslides in the image are identified for trials that produce a commission error rate of less than 50%. Commission errors are dominated by image objects related to roads and waste wood areas in clearcuts. A higher rate of successful identification was noted for landslides which occurred within 15 years of image acquisition (24% to 32%), and was most apparent for the subset of that group which was located in areas that were harvested more than 15 years before acquisition or were unharvested (29% to 38%). Successful identifications in the trials are dominated by events greater than 300 metres long and wider than 20 metres. The results suggest that the approach is more reliable in unharvested areas of the image. The poor quality of the digital elevation data, specifically artifacts produced by the contour-to-grid algorithm, was partly responsible for errors of commission and omission. The simplicity of the object definition used is another factor in error production. The methodology is not operational, but represents a realistic approach to scene segmentation for resource management given further refinement. / Forestry, Faculty of / Graduate
450

ON THE COMPOSITION OF YOUNG, DIRECTLY IMAGED GIANT PLANETS

Moses, J. I., Marley, M. S., Zahnle, K., Line, M. R., Fortney, J. J., Barman, T. S., Visscher, C., Lewis, N. K., Wolff, M. J. 23 September 2016 (has links)
The past decade has seen significant progress on the direct detection and characterization of young, self-luminous giant planets at wide orbital separations from their host stars. Some of these planets show evidence for disequilibrium processes like transport-induced quenching in their atmospheres; photochemistry may also be important, despite the large orbital distances. These disequilibrium chemical processes can alter the expected composition, spectral behavior, thermal structure, and cooling history of the planets, and can potentially confuse determinations of bulk elemental ratios, which provide important insights into planet-formation mechanisms. Using a thermo/photochemical kinetics and transport model, we investigate the extent to which disequilibrium chemistry affects the composition and spectra of directly imaged giant exoplanets. Results for specific "young Jupiters" such as HR 8799 b and 51 Eri b are presented, as are general trends as a function of planetary effective temperature, surface gravity, incident ultraviolet flux, and strength of deep atmospheric convection. We find that quenching is very important on young Jupiters, leading to CO/CH4 and N-2/NH3 ratios much greater than, and H2O mixing ratios a factor of a few less than, chemical-equilibrium predictions. Photochemistry can also be important on such planets, with CO2 and HCN being key photochemical products. Carbon dioxide becomes a major constituent when stratospheric temperatures are low and recycling of water via the H-2 + OH reaction becomes kinetically stifled. Young Jupiters with effective temperatures less than or similar to 700 K are in a particularly interesting photochemical regime that differs from both transiting hot Jupiters and our own solar-system giant planets.

Page generated in 0.018 seconds