• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 259
  • 123
  • 109
  • 29
  • 24
  • 16
  • 16
  • 8
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 694
  • 100
  • 79
  • 74
  • 69
  • 67
  • 54
  • 48
  • 41
  • 40
  • 37
  • 37
  • 36
  • 32
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Magnetic Properties of Electrodeposited Nanocrystalline Ni-Fe alloys

Wang, Minghe 04 1900 (has links)
<p>Ni-Fe alloys have been used in industrial applications over the past century due to their unique mechanical and magnetic properties. Currently, researchers are interested in enhancing the performance of Ni-Fe alloys by modifying their microstructure. An example of this would be the use of ultra-fine nanocrystalline Ni-Fe alloys for magnetic shielding products that are uniquely shaped and cost effective. These nanocrystalline materials usually exhibit good soft magnetic properties, such as high saturation magnetization, low coercivity and good magnetic permeability. The following study has been devoted to the magnetic properties of electrodeposited nanocrystalline Ni-Fe alloys.</p> <p>The structure and texture of electrodeposited Ni-Fe alloys was studied by two-dimensional XRD. The Ni-Fe alloys with Fe content from 24.9at. % to 54.2at. % were comprised exclusively of the FCC phase. For 60.2at. % Fe sample, a mixed phase of BCC and FCC structure was found. The lattice parameter increased with increasing Fe content until 54.2at. %, and then decreased due to the presence of BCC structure. The increase in lattice parameter was attributed to the iron replacement of nickel in the Ni crystalline lattice. Texture analysis shows that all Ni-Fe alloys with different Fe content exhibit the fiber texture with a major component of theaxis aligned perpendicular to the sample plane. A second component iswith a significantly lower volume fraction. It also shows that the Ni-Fe alloy with 44.2at. % Fe exhibits the highest volume fraction of random orientation.</p> <p>Magnetic measurements showed that all Ni-Fe nanocrystalline alloys exhibit soft magnetic properties with narrow hysteresis loops. The saturation magnetization increased linearly with increasing Fe content. The magnetization at T = 2K were slightly higher than that at T = 298K. The lowest coercivity~6Oe was obtained at 44.2 at. % Fe content.</p> <p>Good agreement between Random Anisotropy Model (RAM) theory and experimental data for all the Ni-Fe alloys has been obtained. By fitting the high field magnetization curve with the Law of Approach to Saturation (LATS), the magnetocrystalline anisotropy constant (K<sub>eff</sub>) were obtained. K<sub>eff</sub> decreased with increasing temperature. Also, the ferromagnetic exchange lengths for each Ni-Fe alloy were calculated. They are 26nm, 21nm, 19nm, 18nm, 17nm for Ni-24.9at.%Fe, Ni-33.1at.%Fe, Ni-44.2at.%Fe, Ni-54.2at.%Fe, Ni-60.2at.%Fe at room temperature, respectively. The exchange lengths are larger than the average grain size (D) for all of the samples. The results confirmed the feasibility of Random Anisotropy Model for the prediction of the magnetic properties of the nanocrystalline Ni-Fe alloys fabricated by electrodeposition.</p> / Master of Applied Science (MASc)
282

Ecological and physiological constraints of deep-sea corals in a changing environment

Gomez, Carlos E January 2018 (has links)
Deep-water or cold-water corals are abundant and highly diverse, greatly increase habitat heterogeneity and species richness, thereby forming one of the most significant ecosystems in the deep sea. Despite this remote location, they are not removed from the different anthropogenic disturbances that commonly impact their shallow-water counterparts. The global decrease in seawater pH due to increases in atmospheric CO2 are changing the chemical properties of the seawater, decreasing the concentration of carbonate ions that are important elements for different physiological and ecological processes. Predictive models forecast a shoaling of the carbonate saturation in the water column due to OA, and suggest that cold-water corals are at high risk, since large areas of suitable habitat will experience suboptimal conditions by the end of the century. The main objective of this study was to explore the fate of the deep-water coral community in time of environmental change. To better understand the impact of climate change this study focused in two of the most important elements of deep-sea coral habitat, the reef forming coral Lophelia pertusa and the octocoral community, particularly the gorgonian Callogorgia delta. By means of controlled experiments, I examined the effects of long- and short-term exposures to seawater simulating future scenarios of ocean acidification on calcification and feeding efficiency. Finally In order to understand how the environment influences the community assembly, and ultimately how species cope with particular ecological filters, I integrated different aspects of biology such functional diversity and ecology into a more evolutionary context in the face of changing environment. My results suggest that I) deep-water corals responds negatively to future OA by lowering the calcification rates, II) not all individuals respond in the same way to OA with high intra-specific variability providing a potential for adaptation in the long-term III) there is a disruption in the balance between accretion and dissolution that in the long term can shift from net accretion to net dissolution, and IV) there is an evolutionary implication for certain morphological features in the coral community that can give an advantage under stresfull conditions. Nevertheless, the suboptimal conditions that deep-water corals will experience by the end of the century could potentially threaten their persistence, with potentially negative consequences for the future stability of this already fragile ecosystem. / Biology
283

Cobalt Nanoparticle-Macromolecular Complexes and Their Conversion to Oxidatively Stable Entities

Baranauskas, Victor Vincent 29 April 2005 (has links)
The goal of the research presented in this dissertation was to synthesize novel macromolecular materials that would afford oxidative stability to magnetic cobalt nanoparticles under ambient conditions. The cobalt nanoparticles were formed via the thermolysis of Co2(CO)8 in concentrated solutions of toluene containing the macromolecular dispersion stabilizers. The copolymers were designed to encapsulate the nanoparticles with a number of thin protective coatings to prevent their undesirable oxidation under ambient condtions. Cobalt nanoparticles encased with an organic glass were synthesized by stabilizing cobalt nanoparticles with poly(methyl methacrylate-co-2-vinylpyridine-g-dimethylsiloxane) whereas nanoparticles encapsulated with triazine networks were formed via the thermal treatment of cobalt particles complexed with poly(styrene-b-4-vinylphenylcyanate). Cobalt nanoparticles coated with a combination of carbonaceous and silica char were obtained by pyrolyzing cobalt particles stabilized with poly (4-vinylphenoxyphthalonitrile-co-4-vinylphenoxytriethoxysilane-g-dimethylsiloxane) graft copolymers. Moreover, cobalt nanoparticles encapsulated with either phthalonitrile networks or graphitic char were prepared via the thermal treatment of nanoparticles stabilized with poly(styrene-b-4-vinylphenoxyphthalonitrile). Oxidatively-stable, magnetic cobalt nanoparticle complexes may be prepared by heating cobalt nanoparticles encapsulated in poly(styrene-b-4-vinylphenoxyphthalonitrile) block copolymers at elevated temperatures. The block copolymers were synthesized through the sequential anionic polymerization of styrene and tert-butyldimethylsilyloxystyrene. The silyl ether protecting groups on the second block were hydrolyzed under acidic conditions to afford poly(styrene-b-4-vinylphenol), and the pendent phenols of the diblock copolymer were chemically modified with 4-nitrophthalonitrile to afford poly(styrene-b-4-vinylphenoxyphthalonitrile). Stable suspensions of ~8-10 nm diameter cobalt metal nanoparticles were formed by thermolysis of dicobalt octacarbonyl in solutions of toluene containing poly(styrene-b-4-vinylphenoxyphthalonitrile). The cobalt-polymer nanoparticle complexes were pyrolyzed under argon to afford highly magnetic cobalt nanoparticles encased in graphitic coatings. Magnetic susceptibility measurements indicate that the cobalt-graphitic particles are oxidatively-stable and retain their high saturation magnetizations (~ 95-100 emu g-1) for at least a year under ambient conditions. / Ph. D.
284

Applied Nonlinear Control of Unmanned Vehicles with Uncertain Dynamics

Morel, Yannick 03 June 2009 (has links)
The presented research concerns the control of unmanned vehicles. The results introduced in this dissertation provide a solid control framework for a wide class of nonlinear uncertain systems, with a special emphasis on issues related to implementation, such as control input amplitude and rate saturation, or partial state measurements availability. More specifically, an adaptive control framework, allowing to enforce amplitude and rate saturation of the command, is developed. The motion control component of this framework, which works in conjunction with a saturation algorithm, is then specialized to different types of vehicles. Vertical take-off and landing aerial vehicles and a general class of autonomous marine vehicles are considered. A nonlinear control algorithm addressing the tracking problem for a class of underactuated, non-minimum phase marine vehicles is then introduced. This motion controller is extended, using direct and indirect adaptive techniques, to handle parametric uncertainties in the system model. Numerical simulations are used to illustrate the efficacy of the algorithms. Next, the output feedback control problem is treated, for a large class of nonlinear and uncertain systems. The proposed solution relies on a novel nonlinear observer which uses output measurements and partial knowledge of the system's dynamics to reconstruct the entire state for a wide class of nonlinear systems. The observer is then extended to operate in conjunction with a full state feedback control law and solve both the output feedback control problem and the state observation problem simultaneously. The resulting output feedback control algorithm is then adjusted to provide a high level of robustness to both parametric and structural model uncertainties. Finally, in a natural extension of these results from motion control of a single system to collaborative control of a group of vehicles, a cooperative control framework addressing limited communication issues is introduced. / Ph. D.
285

Nonholonomic Control Utilizing Kinematic Constraints of Differential and Ackermann Steering Based Platforms

Shoemaker, Adam 19 December 2016 (has links)
A nonholonomic tracking controller is designed and adapted to work with both differential steering and Ackermann steering based platforms whose dynamics are represented using a unicycle model. The goal of this work is to find a relatively simple approach that offers a practical alternative to bulky and expensive algorithms, but still bolsters applicability where many other lightweight algorithms are too lax. The hope is that this alternative will offer a straightforward approach for groups interested in autonomous vehicle research but who do not have the resources or personnel to implement more complex solutions. In the first phase of this work, saturation constraints based on differential drive kinematics are added to ensure that the vehicle behaves intuitively and does not exceed user defined limitations. A new strategy for mapping commands back into a viable envelope is introduced, and the restrictions are accounted for using Lyapunov stability criteria. This stage of work is validated through simulation and experimentation. Following the development of differential drive methods, similar techniques are applied to Ackermann steering kinematic constraints. An additional saturation algorithm is presented, which likewise is accounted for using Lyapunov stability criteria. As with the differential case, the Ackermann design is validated through simulation and experimentation. Overall, the results presented in this work demonstrate that the developed algorithms show significant promise and offer a lightweight, practical solution to the problem of vehicle tracking control. / Master of Science
286

Validation of tissue oxygen saturation determined by near-infrared spectroscopy in canine models of hypoxemia and hemorrhagic shock

Pavlisko, Noah Dawson 08 October 2014 (has links)
The objective of this study was to evaluate the relationship between tissue oxygen saturation (StO2) and oxygen delivery index (DO2I). Oxygen delivery index is product of two factors arterial oxygen content (CaO2) and cardiac index (CI). In this study the relationship between DO2I and StO2 was evaluated by manipulating both of these factors independently. In phase one of the study, CaO2 was altered by manipulating the fractional inspired oxygen (FiO2) concentration. Anesthetized dogs were evaluated at both high (0.40 and 0.95) and low (0.15 and 0.10) FiO2 sequences. In phase two of the study, CI was altered by manipulating the volemic state. Anesthetized dogs were evaluated at hypovolemic, normovolemic and hypervolemic states. In each phase dogs were instrumented for thermodilution cardiac index (CI) and sartorius muscle StO2. Data collected included hemoglobin concentration, heart rate (HR), MAP, CI, StO2. Arterial oxygen content and DO2I were calculated at each time point. Data analysis included Pearson's correlation and mixed model ANOVA (p < 0.05). In both phases one (r = 0.97; p = 0.0013) and two (r = 0.97; p = 0.005) there was a strong correlation between StO2 and DO2I. Under the conditions of this study, there was a strong correlation between StO2 and DO2I, suggesting that StO2 may be used to estimate the adequacy of oxygen delivery in dogs. / Master of Science
287

Development of Kinetic Parameterization Methods for Nitrifying Bacteria using Respirometry

Malin, Kyle George 19 January 2022 (has links)
Understanding how nitrifiers react when exposed to low DO conditions could provide a greater understanding of low DO operations in full-scale biological wastewater treatment. Previous methods to observe nitrifier oxygen kinetics do exist in literature, however they are inefficient and labor intensive. Other more efficient methods require the use of selective inhibitors, which alter the characteristics of the biomass. This study developed a time and labor efficient respirometric method to distinctly measure oxygen half-saturation coefficients for both ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) without the use of selective inhibitors. By eliminating the use of inhibitory substances, representative biomass characteristics were maintained throughout the tests. The developed method, called the declining DO method, consisted of using a high-speed dissolved oxygen (DO) probe to measure relative oxygen uptake rates (OUR) within a batch reactor when varying substrates (ammonia and nitrite) were present in excess within the system. A forward model was developed based on Monod kinetics to simultaneously fit Monod curves to the experimental OUR data. These curves were fit by solving for optimum oxygen kinetic parameters representing endogenous respiration, NOB, and AOB. An inverse model using Markov chain Monte Carlo analysis was applied to the results found in the forward model to provide statistical validation of the proposed respirometric method. A separate method, called the substrate utilization rate test, was conducted in parallel with the declining DO tests to compare and verify oxygen half-saturation coefficient results. Parallel tests were conducted using biomass samples from three different Hampton Roads Sanitation District (HRSD) full-scale facilities. Operating conditions between the three HRSD facilities were considered when performing parallel testing, including averages for DO, solids retention time (SRT), and floc size. Average floc size was found to have a significant effect on the observed oxygen half-saturation values. Observed trends for the KO values estimated using the two methods remained consistent throughout all tests, where KO,NOB was always lower than KO,AOB. The comparison of the two methods highlighted some faults associated with the substrate utilization rate test, which is commonly used in literature to observe nitrifier oxygen kinetics. The declining DO method appeared to be more resistant to potential experimental error and required less than half the time compared to the substrate utilization rate test. The development of the declining DO method without the use of selective inhibitors provided a more time and labor efficient technique for estimating apparent KO values for NOB and AOB without sacrificing biomass characteristics representative of the full-scale treatment process. Biomass samples collected from variable treatment process conditions yielded consistent parallel test results, providing further evidence that the proposed declining DO method can be a robust and reliable technique for distinctly measuring apparent oxygen half-saturation values for NOB and AOB. / Master of Science / Wastewater treatment operations utilizing biological nitrogen removal (BNR) require a continuous supply of oxygen for aerobic processes. Energy costs associated with aeration generally accounts for at least 50% of the total energy consumption at conventional activated sludge wastewater treatment facilities. Operating aerobic zones at low average dissolved oxygen (DO) concentrations could be an effective way to significantly reduce aeration costs as well as material costs associated with BNR treatment processes. This study developed a method to measure oxygen kinetics for the two groups of autotrophic bacteria responsible for performing nitrogen removal. The method consisted of measuring relative oxygen uptake rates (OUR) within a batch reactor when varying substrates were available. This method is unique from previously developed techniques in that the use of selective inhibitors was not included, meaning the characteristics of the wastewater were largely unchanged and therefore better represent biomass conditions within the full-scale process. The results of the proposed method were verified using an alternate method for estimating oxygen kinetics. These two methods were conducted in parallel using biomass samples from several full-scale Hampton Roads Sanitation District wastewater treatment facilities utilizing a variety of process designs and operating conditions. Consistent results obtained between the two methods suggested the proposed method is an effective technique for distinctly measuring nitrifier oxygen kinetics.
288

A Comparison of Two Methods Used to Deal with Saturation of Multiple, Redundant Aircraft Control Effectors

Nelson, Mark D. 18 September 2001 (has links)
A comparison of two methods to deal with allocating controls for unattainable moments in an aircraft was performed using a testbed airframe that resembled an F/A-18 with a large control effector suite. The method of preserving the desired moment direction to deal with unattainable moments is currently used in a specific control allocator. A new method of prioritizing the pitch axis is compared to the moment-direction preservation. Realtime piloted simulations are completed to evaluate the characteristics and performance of these methods. A direct comparison between the method of preserving the moment direction by scaling the control solution vector and prioritizing the pitching moment axis is performed for a specific case. Representative maneuvers are flown with a highly unstable airframe to evaluate the ability to achieve the specific task. Flight performance and pilot interpretation are used to evaluate the two methods. Pilot comments and performance results favored the method of pitch-axis prioritization. This method provided favorable flight characteristics compared to the alternative method of preserving the moment direction for the specific tasks detailed in this paper. NOTE: An updated copy of this ETD was added on 09/28/2010. / Master of Science
289

Analysis of Multiresolution Data fusion Techniques

Carter, Duane B. 24 April 1998 (has links)
In recent years, as the availability of remote sensing imagery of varying resolution has increased, merging images of differing spatial resolution has become a significant operation in the field of digital remote sensing. This practice, known as data fusion, is designed to enhance the spatial resolution of multispectral images by merging a relatively coarse-resolution image with a higher resolution panchromatic image of the same geographic area. This study examines properties of fused images and their ability to preserve the spectral integrity of the original image. It analyzes five current data fusion techniques for three complex scenes to assess their performance. The five data fusion models used include one spatial domain model (High-Pass Filter), two algebraic models (Multiplicative and Brovey Transform), and two spectral domain models (Principal Components Transform and Intensity-Hue-Saturation). SPOT data were chosen for both the panchromatic and multispectral data sets. These data sets were chosen for the high spatial resolution of the panchromatic (10 meters) data, the relatively high spectral resolution of the multispectral data, and the low spatial resolution ratio of two to one (2:1). After the application of the data fusion techniques, each merged image was analyzed statistically, graphically, and for increased photointerpretive potential as compared with the original multispectral images. While all of the data fusion models distorted the original multispectral imagery to an extent, both the Intensity-Hue-Saturation Model and the High-Pass Filter model maintained the original qualities of the multispectral imagery to an acceptable level. The High-Pass Filter model, designed to highlight the high frequency spatial information, provided the most noticeable increase in spatial resolution. / Master of Science
290

Bias effects of short- and long-term color memory for unique objects

Bloj, Marina, Weiß, D., Gegenfurtner, K.R. 2016 January 1927 (has links)
Yes / Are objects remembered with a more saturated color? Some of the evidence supporting this statement comes from research using “memory colors”—the typical colors of particular objects, for example, the green of grass. The problematic aspect of these findings is that many different exemplars exist, some of which might exhibit a higher saturation than the one measured by the experimenter. Here we avoid this problem by using unique personal items and comparing long- and short-term color memory matches (in hue, value, and chroma) with those obtained with the object present. Our results, on average, confirm that objects are remembered as more saturated than they are.

Page generated in 0.0338 seconds