• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Experimental study of seismic scattering by a penny-shaped crack

Scheimer, James Francis January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1979. / Bibliography: leaves 146-150. / by James Francis Scheimer. / Ph.D.
22

Application of complex trace attributes to reflection seismic data near Charleston, South Carolina

Miller, Steven B. January 1985 (has links)
Complex trace attribute analysis has been applied to 24-fold VIBROSEIS reflection data acquired on the Atlantic Coastal Plain near Charleston, S. C., to yield an expanded interpretation of a Mesozoic basin concealed beneath Coastal Plain sediments. Complex trace attributes express the seismic trace in terms of a complex variable and emphasize different components of the original seismogram. Attributes derived from synthetic seismograms of thin beds are used to interpret the patterns observed on the real data. Complex trace attributes derived from the original seismic trace complement the interpretation of a Mesozoic basin originally imaged by conventional data. The combination of single-sweep recording and use of complex trace attributes is believed to support an interpretation of a transition from basin border conglomerates into finer-grained siltstones nearer to the center of the basin. / Master of Science / incomplete_metadata
23

Micro-seismicity and deep seafloor processes in the Western Sea of Marmara : insights from the analysis of Ocean Bottom Seismometer and Hydrophone data / Micro-séismicité et processus de fond de mer dans la partie ouest de la Mer de Marmara : nouveaux résultats fondés sur l'analyse des données de sismographes et hydrophones sous-marins

Batsi, Evangelia 15 November 2017 (has links)
Depuis les séismes dévastateurs de 1999 d’Izmit et de Duzce, la partie immergée de la Faille Nord Anatolienne (FNA)en Mer de Marmara fait l’objet d’une intense surveillance. Malgré cela, la micro-sismicité demeure mal connue. Par ailleurs, alors que la connexion avec le système pétrolier du Bassin de Thrace est établie, le rôle du gaz sur la sismicité n’a pas été identifié.Dans ce travail, nous avons analysé des données d’OBS (Ocean Bottom Seismometers) acquises dans la partie ouest de la Mer de Marmara (en avril-juillet 2011 et septembre-novembre 2014), à partir de méthodes non-linéaires –NonLinLocet d’un modèle 3D de vitesses. Une grande partie de la sismicité se produit à des profondeurs inférieures à 6 km environ : le long de failles secondaires, héritées de l’histoire complexe de la FNA ; ou dans des couches de sédiments superficiels (< 1 km) riches en gaz. Cette sismicité superficielle semble être associée à des processus liés au gaz, déclenchés par les séismes profonds de magnitude M1 > 4.5 qui se produisent régulièrement le long de la MMF.Par ailleurs, 2 familles de signaux de courte durée (<1s), dits ≪ SDE ≫ (pour Short Duration Event) apparaissent sur les enregistrements : 1) les SDE se produisant à raison de quelques dizaines de SDE/jour, en réponse à des causes locales (i.e. bioturbation, activité biologique, micro-bullage de fond de mer, mouvements à l’interface eau/sédiment), etc ; 2) lesSDE se produisant par ≪paquets≫, dont certains sont enregistrés sur les 4 composantes (y compris l’hydrophone) et apparaissent de manière périodique, toutes les 1.8 s environ, en réponse à diverses causes qui restent à déterminer (parmi lesquelles : les mammifères marins ; l’activité humaine ; la sismicité ; le dégazage ; les ≪trémors≫ sismiques ; etc). / Since the devastating earthquakes of 1999, east of Istanbul, the submerged section of the North Anatolian Fault (NAF), in the Sea of Marmara (SoM) has been intensively monitored, mainly using land stations. Still, the micro-seismicity remains poorly understood. In addition, although the connection of the SoM with the hydrocarbon gas system from the Thrace Basin is now well established, along with the presence of widespread gas within the sedimentary layers, the role of gas on seismicity is still not recognized.Here, we have analyzed Ocean Bottom Seismometer (OBS) data from two deployments (April-July 2011 and September-November 2014) in the western SoM. Based on a high-resolution, 3D-velocity model, and on non-linear methods (NonLinLoc), our location results show that a large part of the micro-seismicity occurs at shallow depths (< 6 a 8 km): along secondary faults, inherited from the complex history of the North-Anatolian shear zone; or within the uppermost (< 1 km), gas-rich, sediment layers. Part of this ultra-shallow seismicity is likely triggered by the deep earthquakes of intermediate magnitude (Ml > 4.5) that frequently occur along the western segments of the MMF.In addition, OBSs also record at least two families of short duration (<1 sec) events (SDEs): 1) “background SDEs” occurring on a permanent, at a rate of a few tens of SDEs/day, resulting from many possible, local causes, e. g.: degassing from the seafloor, biological activity near the seabed, bioturbation, etc; 2) “swarmed SDEs”, among which some are recorded also on the hydrophone, and characterized by a periodicity of ~ 1.8 seconds. The causes of these SDEs still remain to be determined (among which: anthropogenic causes, marine mammals, gas emissions, regional seismicity, tremors from the MMF, etc).
24

Delineation of the Nootka fault zone and structure of the shallow subducted southern Explorer plate as revealed by the Seafloor Earthquake Array Japan Canada Cascadia Experiment (SeaJade)

Hutchinson, Jesse 25 May 2020 (has links)
At the northern extent of the Cascadia subduction zone, the subducting Explorer and Juan de Fuca plates interact across a translational deformation zone, known as the Nootka fault zone. The Seafloor Earthquake Array Japan-Canada Cascadia Experiment (SeaJade) was designed to study this region. In two parts (SeaJade I and II, deployed from July – September 2010 and January – September 2014), seismic data from the SeaJade project has led to several important discoveries. Hypocenter distributions from SeaJade I and II indicate primary and secondary conjugate faults within the Nootka fault zone. Converted phase analysis and jointly determined seismic tomography with double-difference relocated hypocenters provide evidence to several velocity-contrasting interfaces seaward of the Cascadia subduction front at depths of ~4-6 km, ~6-9 km, ~11-14 km, and ~14-18 km, which have been interpreted as the top of the oceanic crust, upper/lower crust boundary, oceanic Moho, and the base of the highly fractured and seawater/mineral enriched veins within oceanic mantle. During SeaJade II, a MW 6.4 mainshock and subsequent aftershocks, known as the Nootka Sequence, highlighted a previously unidentified fault within the subducted Explorer plate. This fault reflects the geometry of the subducting plate, showing downward bending of the plate toward the northwest. This plate bend can be attributed to negative buoyancy from margin parallel mantle flow induced by intraslab tearing further northwest. Seismic tomography reinforces the conclusions drawn from the Nootka Sequence hypocenter distribution. Earthquakes from the entire SeaJade II catalogue reveal possible rotated paleo-faults, identifying the former extent of the Nootka fault zone from ~3.5 Ma. / Graduate
25

Temporal Variations in the Compliance of Gas Hydrate Formations

Roach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
26

Temporal Variations in the Compliance of Gas Hydrate Formations

Roach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time. A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.

Page generated in 0.0187 seconds