• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1032
  • 446
  • 232
  • 207
  • 101
  • 37
  • 23
  • 23
  • 12
  • 11
  • 10
  • 8
  • 6
  • 5
  • 5
  • Tagged with
  • 2694
  • 488
  • 369
  • 349
  • 255
  • 236
  • 223
  • 192
  • 191
  • 176
  • 175
  • 172
  • 164
  • 153
  • 150
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

In-situ comparison of thermal measurement technologies for interpretation of PV module temperature de-rating effects

Elwood, Teri, Bennett, Whit, Lai, Teh, Simmons-Potter, Kelly 26 September 2016 (has links)
It is well known that the efficiency of a photovoltaic (PV) module is strongly impacted by its temperature such that higher temperatures lead to lower energy conversion efficiencies. An accurate measurement of the temperature de-rating effect, therefore, is vital to the correct interpretation of PV module performance under varied environmental conditions. The current work investigates and compares methods for performing measurements of module temperature both in the lab and in field-test environments. A comparison of several temperature measurement devices was made in order to establish the ideal sensor configuration for quantifying module operating temperature. Sensors were also placed in various locations along a string of up to eight photovoltaic modules to examine the variance in operating temperature with position in the string and within a larger array of strings.
392

Detection and velocity of a fast moving object

Gudipudi, Venkata Naga Manikanta Aditya January 2017 (has links)
Over a past few years, technology is constructing the way humans live. With the rapid growth towards Internet of Things (IOT) and other connected services, companies are investigating the ways to enhance current living conditions. There are several devices that are launched in the market to help people to increase flexibility and most of all, to see beyond what is possible. It is helping us reinforce ourselves in our day to day activities. Even in sports, thanks to the latest technological developments, most people’s lives have been enhanced and simplified. Advances in technology has a huge impact on sports which includes- analysis of sport performance, improvements in design of sports equipment and facilitate coaches to provide feedback on players’ performance. Sports equipment continually undergoing research and development to improve sporting performance ensuring a superior game and positive results. Significant technology such as smart gear is popular among athletes to analyse their performance. The equipment usually includes sensors controlled by microcontrollers. The main contribution of this thesis is to investigate the possibilities of a suitable sports equipment to detect and calculate speed of a fast-moving object and providing the drawbacks while using different sensors. In this thesis, IR/Laser sensors, along with a Doppler radar module were tested to put forward a best suitable method to calculate the speed of a fast-moving object and transmit the data over a network.
393

Determination of capsaicin using carbon nanotube based electrochemical biosensors

Mpanza, Thabani Eugene January 2016 (has links)
Submitted in fulfillment of the requirements for the Degree of Master of Applied Science in Chemistry, Durban University of Technology, Durban, South Africa, 2016. / This study involves the development of a sensitive electrochemical biosensor for the determination of capsaicin extracted from chilli pepper fruit, based on a novel signal amplification strategy. The study therefore, seeks to provide a sensitive electro-analytical technique to be used for the determination of capsaicin in food and spicy products. Electrochemical measurements using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) modes were utilized in order to understand the redox mechanism of capsaicin and to test the performance of the developed biosensor supported with computational techniques. In this work two different enzymes, Phenylalanine ammonia lyase (PAL) and Glucose oxidase (GOx) were used for electrode modifications respectively. For this purpose three different types of working electrodes namely: glassy carbon electrode (GCE), platinum electrode (Pt-E) and gold electrode (Au-E) were used and their performances were compared. For the first time, the three electrodes were modified with PAL and GOx enzymes on multiwalled carbon nanotubes used in this study and characterized by attenuated total reflectance infrared spectroscopy, transmittance electron microscopy and thermo-gravimetric analysis supported by computational methods. The comparison of the results obtained from the bare and modified platinum electrodes revealed the sensitivity of the developed biosensor with modified electrode having high sensitivity of 0.1863 µg.L-1 and electron transfer rate constant (ks) of 3.02 s-1. To understand the redox mechanism completely, adsorption and ligand-enzyme docking simulations were carried out. Docking studies revealed that capsaicin formed hydrogen bonds with Glutamates (GLU355, GLU541, GLU586), Arginine (ARG) and other amino acids of the hydrophobic channel of the binding sites which facilitated the redox reaction for detection of capsaicin. These results confirm that the PAL enzyme facilitated the electron transfer from the capsaicin ligand, hence improving the biosensing response. Our results suggest potential applications of this methodology for the determination of capsaicin in the food industry. / M
394

In Situ Measurement and Emulation of Severe Mulitipath Environments

DiStasi, Stephen 08 October 2008 (has links)
ABSTRACT For a variety of wireless sensor network applications, sensor nodes may find their received signal strengths dominated by small-scale propagation effects. Particularly impacted are applications designed to monitor structural health and environmental conditions in metal cavities such as aircraft, busses, and shipping containers. Small changes in each sensor’s position or carrier frequency can cause large variations in this received signal strength, thereby compromising link connectivity. We leverage a technique called Wireless Sensors Sensing Wireless (WSSW) in which wireless sensors act as scalar network analyzers in order to characterize their own environment. WSSW data can enable sensors to react to particularly bad fading, such as hyper-Rayleigh, by switching to a good channel or by implementing other mitigation techniques, such as utilizing a diversity antenna. In this work, the WSSW concept has been extended to accommodate mesh networks and include a spectrum analysis capability for recognizing potentially interfering wireless activity. The test of mitigation techniques is often problematic since application sites are far from controlled environments and are often difficult to access. To address this problem, we have developed a Compact Reconfigurable Channel Emulator (CRCE) to create a laboratory environment that is configurable to a variety of repeatable fading scenarios. With the CRCE, fading characteristics found at a specific wireless sensor network location may be replicated inside the chamber to discover the connectivity capabilities of the sensors and the effectiveness of diversity schemes (e.g., channel switching or multi-element antenna arrays).
395

Standalone and embedded stereo visual odometry based navigation solution

Chermak, Lounis January 2015 (has links)
This thesis investigates techniques and designs an autonomous visual stereo based navigation sensor to improve stereo visual odometry for purpose of navigation in unknown environments. In particular, autonomous navigation in a space mission context which imposes challenging constraints on algorithm development and hardware requirements. For instance, Global Positioning System (GPS) is not available in this context. Thus, a solution for navigation cannot rely on similar external sources of information. Support to handle this problem is required with the conception of an intelligent perception-sensing device that provides precise outputs related to absolute and relative 6 degrees of freedom (DOF) positioning. This is achieved using only images from stereo calibrated cameras possibly coupled with an inertial measurement unit (IMU) while fulfilling real time processing requirements. Moreover, no prior knowledge about the environment is assumed. Robotic navigation has been the motivating research to investigate different and complementary areas such as stereovision, visual motion estimation, optimisation and data fusion. Several contributions have been made in these areas. Firstly, an efficient feature detection, stereo matching and feature tracking strategy based on Kanade-Lucas-Tomasi (KLT) feature tracker is proposed to form the base of the visual motion estimation. Secondly, in order to cope with extreme illumination changes, High dynamic range (HDR) imaging solution is investigated and a comparative assessment of feature tracking performance is conducted. Thirdly, a two views local bundle adjustment scheme based on trust region minimisation is proposed for precise visual motion estimation. Fourthly, a novel KLT feature tracker using IMU information is integrated into the visual odometry pipeline. Finally, a smart standalone stereo visual/IMU navigation sensor has been designed integrating an innovative combination of hardware as well as the novel software solutions proposed above. As a result of a balanced combination of hardware and software implementation, we achieved 5fps frame rate processing up to 750 initials features at a resolution of 1280x960. This is the highest reached resolution in real time for visual odometry applications to our knowledge. In addition visual odometry accuracy of our algorithm achieves the state of the art with less than 1% relative error in the estimated trajectories.
396

Diagnostic, reconstruction et identification des défauts capteurs et actionneurs : application aux station d’épurations des eaux usées / Diagnosis and sensors and actuators fault reconstruction : application to WWTPs

Methnani, Salowa 17 December 2012 (has links)
Ce travail de thèse propose une méthode générale de reconstruction de défauts. Cette méthode donne un aperçu sur le problème d’observabilité des entrées inconnues. Par la suite, une méthodologie de détection et d’isolation de défauts capteurs et actionneurs est proposée. Le schéma de FDI est basé sur une banque d’observateurs. L’implémentation de cette méthode pour un modèle ASM1 réduit conduit à une table de signature fortement localisante.La deuxième partie porte sur la problématique de « l’observation des systèmes non linéaires ». Le filtre de Kalman étendu (FKE) est l’un des observateurs les plus largement utilisé à cette fin. Cependant, la convergence de cet observateur n’est pas prouvée. Lorsque le FKE est appliqué à un système mis sous une forme canonique d’observabilité, il acquiert, des propriétés de convergence exponentielle globales. Cependant, ce dernier entraine une amplification de bruit. Afin de combiner l’efficacité d’un FKE en termes de lissage de bruit, et la réactivité d’un OKE grand gain face aux larges variations, [Boizot et al., 2010] ont proposé un observateur adaptatif. Ainsi, cet observateur est appliqué au système non-linéaire MIMO d’une station d’épuration biologique. Une étude comparative entre ces trois observateurs est menée afin de mettre en évidence la pertinence de l’observateur adaptatif. / This thesis proposes a general methodology for identifying and reconstructing sensor faults on dynamical processes. This identification theory provides a general framework for the problem of "observability with unknown inputs". Next, a framework for fault detection and isolation of sensors and actuators is proposed. The FDI sheme is based on bank of high-gain observers. A simulation study of a waste water treatment plant shows the effectiveness of the proposed approach.The second point evoked in the thesis is the observability of nonlinear dynamic systems and state estimation. The Extended Kalman Filter (EKF) is a widely used observer for such nonlinear systems. However, it suffers from the lack of theoretical justifications. The EKF, when applied to a system put in a normal form of observability, it acquires the property of global exponential convergence. Unfortunately, this latter observer (HG-EKF) is very sensitive to measurement noise. In order to combine the behaviors of the EKF (efficiency with respect to noise smoothing) and of the HG-EKF (reactivity to large estimation errors), (Boizot et al, 2010) proposed an adaptive high gain observer. This observer is applied to a MIMO nonlinear system of an Activated Sludge Process. A comparison study of the performances of the three observers under consideration is carried out. Results show a clearly better state estimation for the adaptive observer.
397

Une approche globale pour la métrologie 3D automatique multi-systèmes / A global approach for automatic 3D part inspection

Audfray, Nicolas 17 December 2012 (has links)
La métrologie 3D permet la vérification de spécifications géométriques et dimensionnelles sur des pièces mécaniques. Ce contrôle est classiquement réalisé à partir de mesures avec des capteurs à contact montés sur des machines à mesurer tridimensionnelles. Ce type de mesures offre une très grande qualité de données acquises mais requiert un temps d'exécution relativement long. Les présents travaux s'attachent donc à développer les mesures optiques dans le cadre de la métrologie 3D qui, avec une qualité diminuée, permettent une exécution beaucoup plus rapide. L'absence de norme concernant ces systèmes de mesure a pour conséquence leur utilisation rare dans le cadre de la métrologie. En effet, le choix d'un système est généralement réalisé à partir de spécifications sur sa qualité. Nous proposons donc une méthode de qualification des systèmes de mesure optiques permettant de quantifier la qualité des données qu'ils fournissent. Les données ainsi qualifiées sont stockées dans une base de données. Un processus global d'inspection 3D multi-systèmes est mis en place, permettant le choix du système de numérisation le mieux adapté (à contact ou sans contact) en termes de qualité et de coût de numérisation, à partir des données qualifiées de la base de données. Lors de l'utilisation de systèmes de mesure optiques, la baisse de qualité est essentiellement due au bruit de numérisation inhérent à ce type de systèmes. Un filtre permettant d'éliminer ce bruit, tout en gardant le défaut de forme de la surface, est mis en place dans le processus afin de rendre possible la vérification de spécifications avec des intervalles de tolérance faibles à l'aide de systèmes de mesure optiques. / 3D metrology allows GD\&{}T verification on mechanical parts. This verification is usually calculated using data obtained with a touch probe mounted on a coordinate measuring machine. Such a measurement offers a high data quality but requires an expensive processing time. The proposed research aims at expanding optical measurements in 3D metrology, reducing execution time but with a lower data quality. The lack of standard in this field makes the use of optical sensors uncommon in 3D metrology. Indeed, the system selection is mostly carried out from its quality specifications. Therefore we propose a protocol to assess the quality of optical measuring systems that allows in particular quantification of acquired data quality. The results of measuring system qualification are stored in a database. Taking advantages of this database, a global multi-system 3D inspection process is set up allowing the selection of the best digitizing system (contact or contactless) in terms of quality and digitizing cost. When using optical sensors, the poor quality is mostly due to digitizing noise inherent to this kind of systems. A filter that removes noise, keeping the form deviation of the surface, is proposed in the process to make possible the specification verification for applications with small tolerance intervals using optical systems.
398

Studium interakce Pd a Pt s oxidy cínu a ceru / Investigation of Pt-SnOx gas sensors

Kúš, Peter January 2013 (has links)
1 is a suitable material for thin-film gas sensors. Higher sensitivity could be achieved by platinum dopping of the layer. This work focuses on the optimalization of and thin film preparation by radio-frequency magnetron sputtering method. Subsequent analysis by means of XPS, AFM, SEM and XRD was carried out to determine physicochemical attributes of resulting layers. It appears that after the deposition, platinum within the layer is present in the metalic , as well as in the mixed chemical state. After the annealing process mixed state dominates over metalic state and after additional annealing platinum is present solely in oxidized form. Sensory response of layers for presence of hydrogen were examined on two different chip platforms (glass with chromium contacts and sapphire with platinum contacts). Contrary to expectations, the platinum dopped layers performed worse in comparison to the pure tin dioxide layers. This could be explained by the fact, that after annealing platinum within the layer was present mainly in the non-metalic form. Both and layers were more sensitive on sapphire platform, which could be associated with the crystal structure formed on its surface or with presence of metalic contacts.
399

Frequency response based permittivity sensors for measuring air contaminants

Ware, Brenton R. January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Naiqian Zhang / Permittivity, displayed when a dielectric material is exposed to an electric field, is a useful property for measuring impurities in a dielectric medium. These impurities often have a dipole moment different from the pure material, and the dipoles align through polarization and impede electric current. By measuring the resulting impedance in a known geometry, the permittivity can be determined. Four permittivity sensors were utilized to measure contaminants that are associated with biofuels, specifically glycerol, ethanol, and ammonia. These sensors were based around either stainless steel or aluminum plates to ensure durability and reliability. By connecting each of these sensors to a signal generating control box, the gain and phase can be measured at 609 frequencies, from 10 kHz up to 120 MHz. Data from each of the three contaminants were run through a method for detection. Measurements for ambient air and air with the contaminants were compared with a statistical analysis. Glycerol, ethanol, and ammonia each had significantly different measurements in the gain and phase data at a unique set of frequencies. Using a neural network analysis for detection resulted in a 95.8%, 93.9%, and 97.1% success rate for detecting glycerol, ethanol, and ammonia, respectively. For ethanol and ammonia, where multiple concentrations were measured, regression methods were used to relate the frequency response data to the contaminant concentration. Stepwise regression, wavelet transformation followed by stepwise regression, partial least squares regression, and neural network regression were the four methods used to establish these relationships. Several regressions over-fit the data, showing coefficient of determination (R[superscript]2) values of 1.000 for training data, yet very low R[superscript]2 values for validation data. However, the best R[superscript]2 values of all the regressions were 1.000 and 0.996 for the training and validation data, respectively, from measuring ammonia.
400

Nano-fabrication of cellular force sensors and surface coatings via dendritic solidification

Paneru, Govind January 1900 (has links)
Doctor of Philosophy / Department of Physics / Bret N. Flanders / Directed electrochemical nanowire assembly (DENA) is a method for fabricating nano-structured materials via electrochemical dendritic solidification. This thesis presents two new applications of nano-structured materials that are fabricated via the DENA methodology: cellular force sensors to probe adhesive sites on living cells and single-crystalline metallic dendrites as surface coating materials. Fast migrating cells like D. discoideum, leukocytes, and breast cancer cells migrate by attachment and detachment of discrete adhesive contacts, known as actin foci, to the substrate where the cell transmits traction forces. Despite their importance in migration, the physics by which actin foci bind and release substrates is poorly understood. This gap is largely due to the compositional complexity of actin foci in living cells and to a lack of technique for directly probing these sub-cellular structures. Recent theoretical work predicts these adhesive structures to depend on the density of adhesion receptors in the contact sites, the receptor-substrate potential, and cell-medium surface tension. This thesis describes the fabrication of sub-microscopic force sensors composed of poly(3,4-ethylene dioxythiophene) fibers that can interface directly with sub-cellular targets such as actin foci. The spring constants of these fibers are in the range of 0.07-430 nN m-1. These fibers were used to characterize the strength and lifetime of adhesion between the single adhesive contacts of D. discoideum cells and the fibers, finding an average force of 3.1 ± 2.7 nN and lifetime of 23.4 ± 18.5 s. This capability is significant because direct measurement of these properties will be necessary to measure the cell-medium surface tension and to characterize the receptor-substrate potential in the next (future) stage of this project. The fabrication of smart materials that are capable of the high dynamic range structural reconfiguration would lead to their use to confer hydrophobic, lipophobic, and anti-corrosive character to substrates in a regenerative manner. As a step towards this goal, we have extended the DENA method to enable repetitive growth and dissolution of metallic dendrites to substrates. The experimental parameters that control this process are the frequency and duty cycle of the alternating voltage signal that initiates the dendritic growth.

Page generated in 0.0459 seconds