21 |
Molecular cloning and DNA sequencing of EBV--specific DNase gene.January 1996 (has links)
Ng Dean Yew, Dennis. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 85-98). / Abstract --- p.i / Acknowledgments --- p.iii / Table of contents --- p.iv / List of figures --- p.vii / List of tables --- p.ix / List of abbreviation --- p.x / Chapter Chapter 1 --- Introduction / Chapter 1.1. --- History --- p.1 / Chapter 1.2. --- Classification and structure of Epstein-Barr Virus --- p.2 / Chapter 1.3. --- Genomic organization of EBV --- p.3 / Chapter 1.4. --- Replication cycle of EBV --- p.5 / Chapter 1.5. --- EBV latent and lytic cycle proteins --- p.6 / Chapter 1.6. --- Clinical diseases associated with EBV Infection --- p.11 / Chapter 1.7. --- Association of EBV and NPC --- p.13 / Chapter 1.8. --- EBV serological markers in the diagnosis of NPC --- p.13 / Chapter 1.9. --- Sources of EBV-specific DNase --- p.15 / Chapter 1.10. --- Characteristics of Epstein-Barr virus alkaline DNase --- p.15 / Chapter 1.11. --- Aim of the project --- p.18 / Chapter Chapter 2 --- Materials & Methods / Chapter 2.1. --- Molecular cloning --- p.19 / Chapter 2.1.1. --- Cell culture --- p.19 / Chapter 2.1.2. --- mRNA purification --- p.19 / Chapter 2.1.3. --- First strand cDNA synthesis --- p.21 / Chapter 2.1.4. --- Polymerase chain reaction (PCR) of cDNA --- p.21 / Chapter 2.1.5. --- Purification of PCR product after gel electrophoresis --- p.22 / Chapter 2.1.6. --- Ligation of PCR amplified DNase gene into pUC18 Sma/BAP vector --- p.23 / Chapter 2.1.7. --- Transformation by electroporation --- p.24 / Chapter 2.1.7.1. --- Cell preparation --- p.24 / Chapter 2.1.7.2. --- Electroporation procedure --- p.25 / Chapter 2.2. --- Extraction ofplasmid DNA --- p.28 / Chapter 2.2.1. --- Boiling preparation --- p.28 / Chapter 2.2.2. --- Plasmid digestion --- p.29 / Chapter 2.3. --- Large-scale purification ofplasmid --- p.29 / Chapter 2.4. --- Small-scale purification ofplasmid --- p.32 / Chapter 2.5. --- DNA sequencing --- p.33 / Chapter 2.5.1. --- Annealing of primer to template DNA --- p.33 / Chapter 2.5.2. --- Labelling reaction --- p.34 / Chapter 2.5.3. --- Sequencing termination reaction --- p.35 / Chapter 2.5.4. --- Prepartion of sequencing gel --- p.36 / Chapter 2.5.5. --- Autoradiography of sequencing gel --- p.38 / Chapter 2.6. --- Epitope mapping --- p.39 / Chapter 2.6.1. --- Processing of EBV- specific DNase peptides --- p.39 / Chapter Chapter 3 --- Results / Chapter 3.1. --- Molecular cloning --- p.41 / Chapter 3.1.1. --- Cell culture --- p.41 / Chapter 3.1.2. --- mRNA purification --- p.42 / Chapter 3.1.3. --- PCR amplification --- p.42 / Chapter 3. 1.4 --- DNA purification of PCR product --- p.42 / Chapter 3.1.5. --- Molecular cloning of PCR amplified DNase gene into pUC18 SmaI/BAP vector --- p.44 / Chapter 3.1.6. --- Transformation by electroporation --- p.46 / Chapter 3.1.7. --- Extraction of plasmid DNA --- p.48 / Chapter 3.1.7.1. --- Boiling preparation --- p.48 / Chapter 3.1.8. --- Plasmid digestion --- p.51 / Chapter 3.2. --- DNA sequencing --- p.51 / Chapter 3.2.1. --- Comparison of B95-8 EBV-speicific DNase gene with gene sequence of EBV in GeneBank --- p.50 / Chapter 3.2.2. --- Comparison of 5' end of Raji & B95-8 EBV derived EBV-specific DNase gene --- p.57 / Chapter 3.2.3. --- Comparison of the 3'end of the Raji and B95-8 denved EBV-specific DNase gene --- p.63 / Chapter 3.2.4. --- Amino acid sequence homology between B95-8 & Raji EBV-specific DNase --- p.64 / Chapter 3.2.5. --- Amino acid sequence comparison between the 3' end of the B95-8 EBV DNase protein with that of the Raji EBV DNase protein --- p.62 / Chapter 3.3. --- Epitope mapping --- p.67 / Chapter 3.3.1. --- Amino acid key --- p.67 / Chapter 3.3.2. --- Amino acid sequence of peptides --- p.73 / Chapter 3.3.2. --- O.D. readings at 492nm of five histologically proven NPC sera --- p.74 / Chapter Chapter 4 --- Discussions / Chapter 4.1. --- Overall strategy --- p.75 / Chapter 4 2 --- Significance of EBV-specific DNase as marker for NPC --- p.76 / Chapter 4.3. --- Characterization of EBV-specific DNase --- p.76 / Chapter 4.4. --- Molecular cloning of PCR amplified gene into PUC18 SmaI/BAP vector --- p.77 / Chapter 4.4.1. --- Cell culture --- p.77 / Chapter 4.4.2. --- PCR amplification --- p.73 / Chapter 4.4.3. --- "Blunting,kinasing and ligation of EBV-specific DNase cDNA into pUC18 vector" --- p.78 / Chapter 4.4 .4 --- .Transformation by electroporation --- p.80 / Chapter 4.4.5. --- Restriction enzyme digestion of pUC18/EBV-DNase plasmid … --- p.81 / Chapter 4.5. --- DNA sequencing --- p.81 / Chapter 4.6. --- Epitope mapping --- p.83 / Reference --- p.85
|
22 |
Analysis of the somatic hypermutation pattern of a chimeric immunoglobulin transgene. / CUHK electronic theses & dissertations collectionJanuary 2000 (has links)
by Kar-Keung Ching. / "May 2000." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (p. 154-173). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
23 |
Cloning and characterization of a cDNA clone that specifies the ribosomal protein L29.January 1996 (has links)
by Patrick, Tik-wan Law. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 144-155). / Acknowledgements --- p.i / Contents --- p.ii / Abstract --- p.vi / Abbreviations --- p.viii / List of figures --- p.ix / List of tables --- p.xiv / Chapter Chapter One: --- Introduction --- p.1-17 / Chapter 1.1 --- General introduction --- p.1 / Chapter 1.2 --- The Human genome project --- p.2 / Chapter 1.3 --- The EST approach --- p.3 / Chapter 1.4 --- Significance of the EST approach --- p.3 / Chapter 1.5 --- Human heart cDNA sequencing --- p.5 / Chapter 1.6 --- Significance of the human adult heart EST project --- p.7 / Chapter 1.7 --- Ribosomal proteins --- p.8 / Chapter 1.7.1 --- The ribosomal constituents --- p.8 / Chapter 1.7.2 --- Eukaiyotic ribosomal proteins --- p.10 / Chapter 1.8 --- Mammalian ribosomal proteins --- p.11 / Chapter 1.8.1 --- Evolution of mammalian ribosomal proteins --- p.11 / Chapter 1.8.2 --- Significance of mammalian ribosomal proteins --- p.12 / Chapter 1.9 --- Possible functional roles of ribosomal protein --- p.14 / Chapter 1.10 --- Nomenclature of ribosomal proteins --- p.16 / Chapter 1.11 --- The theme of the thesis --- p.17 / Chapter Chapter Two: --- Materials and Methods --- p.18-49 / Chapter 2.1 --- Cycle sequencing --- p.18 / Chapter 2.1.1 --- Plating out the cDNA library --- p.18 / Chapter 2.1.2 --- Amplification of the cDNA clones by PCR --- p.19 / Chapter 2.1.3 --- Purification and quantitation of the PCR product --- p.20 / Chapter 2.1.4 --- Cycle DNA sequencing --- p.20 / Chapter 2.2 --- Cloning of hrpL29 in pUC 18 cloning vector --- p.21 / Chapter 2.2.1 --- Amplification of the phage by plate lysate --- p.21 / Chapter 2.2.2 --- Amplification of the insert by PCR --- p.22 / Chapter 2.3 --- Screening for hrpL29 transformant --- p.22 / Chapter 2.3.1 --- Mini-preparation of plasmid DNA (Sambrook et al,1989) --- p.22 / Chapter 2.3.2 --- Large scale preparation of plasmid DNA --- p.24 / Chapter 2.4 --- Primer design for cloning of an intron of hrpL29 --- p.26 / Chapter 2.5 --- Isolation of the intron of hrpL29 by PCR --- p.26 / Chapter 2.6 --- Restricted endonuclease digestion --- p.27 / Chapter 2.7 --- Purification of DNA from the agarose gel --- p.27 / Chapter 2.8 --- Dephosphorylation of linearized plasmid DNA --- p.29 / Chapter 2.9 --- DNA ligation --- p.29 / Chapter 2.10 --- "Preparation of competent bacterial cells for transformation (Hanahan,1985)" --- p.30 / Chapter 2.11 --- Plasmid DNA Transformation --- p.31 / Chapter 2.12 --- Unicycle DNA sequencing by T7 polymerase (Pharmacia) --- p.32 / Chapter 2.13 --- Synthesis of radiolabelled DNA probe --- p.33 / Chapter 2.14 --- "Oligonucleotide synthesis, deprotection and purification" --- p.34 / Chapter 2.14.1 --- Oligonucleotide synthesis --- p.34 / Chapter 2.14.2 --- Deprotection and purification of oligonucleotides --- p.35 / Chapter 2.15 --- Southern analysis --- p.36 / Chapter 2.15.1 --- "Isolation of genomic DNA from leukocytes (Ciulla et al,1988)" --- p.36 / Chapter 2.15.2 --- Restricted digestion and fractionation of genomic DNA --- p.37 / Chapter 2.15.3 --- Southern transfer of DNA onto a membrane support --- p.37 / Chapter 2.15.4 --- Prehybridization of the Southern blot --- p.40 / Chapter 2.15.5 --- Hybridization of the Southern blot --- p.40 / Chapter 2.16 --- Northern analysis --- p.41 / Chapter 2.16.1 --- "Isolation of total RNA by using the AGPC-RNA method (Chomczynski and Sacchi,1987, modified)" --- p.41 / Chapter 2.16.2 --- Separation of total RNA by electrophoresis and transfer onto a membrane support --- p.43 / Chapter 2.16.3 --- Prehybridization of the Northern blot --- p.46 / Chapter 2.16.4 --- Hybridization of the Northern blot --- p.47 / Chapter 2.17 --- First strand cDNA synthesis (Pharmacia) --- p.48 / Chapter 2.18 --- PCR of the first strand cDNA --- p.48 / Chapter Chapter Three: --- Results --- p.50-113 / Chapter 3.1 --- Partial sequencing of adult human heart cDNA clones --- p.50 / Chapter 3.2 --- DNA homology searching by using the program BLASTN --- p.52 / Chapter 3.2.1 --- Catalogue of the 502 ESTs of the cardiovascular system --- p.54 / Chapter 3.2.2 --- Classification and frequency of the human adult heart cDNA clones --- p.63 / Chapter 3.3 --- Submission of the cDNA sequences to NCBI --- p.64 / Chapter 3.4 --- Pattern of gene expression in the human adult cardiovascular system --- p.66 / Chapter 3.5 --- "Sequence determination of hrpL29 (Law et. al., 1996)" --- p.72 / Chapter 3.5.1 --- Cycle Taq sequencing of hrpL29 --- p.72 / Chapter 3.5.2 --- Subcloning of the hrpL29 cDNA insert into the pUC18 DNA cloning vector --- p.75 / Chapter 3.5.3 --- Unicycle T7 sequencing of hrpL29 --- p.77 / Chapter 3.6 --- Sequence alignment and comparison of hrpL29 with other known sequences in the databases --- p.79 / Chapter 3.7 --- The primary structure of hrpL29 --- p.83 / Chapter 3.8 --- Results of RT-PCR and PCR --- p.88 / Chapter 3.9 --- Genomic analysis of hrpL29 --- p.92 / Chapter 3.9.1 --- Isolation of the first intron of hrpL29 --- p.92 / Chapter 3.9.2 --- Southern analysis of hrpL29 --- p.97 / Chapter 3.10 --- Northern analysis of hrpL29 --- p.103 / Chapter 3.10.1 --- Tissue distribution of hrpL29 mRNA in rat tissues --- p.103 / Chapter 3.10.2 --- Time course of hRPL29 expression in mouse heart --- p.106 / Chapter 3.10.3 --- Time course of hRPL29 expression in mouse brain --- p.110 / Chapter Chapter Four: --- Discussion --- p.114-139 / Chapter 4.1 --- Characterization of the ESTs --- p.114 / Chapter 4.2 --- Significance of the heart EST project --- p.116 / Chapter 4.3 --- Redundancy of the EST sequencing --- p.118 / Chapter 4.4 --- The importance of frequent database searching --- p.119 / Chapter 4.5 --- The importance of an efficient comparison algorithm --- p.120 / Chapter 4.6 --- Human ribosomal protein L29 (hRPL29) --- p.122 / Chapter 4.7 --- Internal duplication in hRPL29 --- p.124 / Chapter 4.8 --- Primary structure analysis of hRPL29 --- p.126 / Chapter 4.9 --- RT-PCR and PCR of the first strand cDNA with primers using the C095-ATG and dT primer --- p.128 / Chapter 4.10 --- Southern analysis of hrpL29 --- p.128 / Chapter 4.11 --- Northern analysis of hrpL29 --- p.133 / Chapter 4.11.1 --- Tissue distribution of the mRNA species of hrpL29 --- p.133 / Chapter 4.11.2 --- Time course of hRPL29 expression in mouse heart and brain --- p.134 / Chapter 4.12 --- Possible functional role of hRPL29 --- p.135 / Chapter 4.13 --- Further aspects --- p.137 / Appendix --- p.140-143 / References --- p.144-155
|
24 |
Computational models for extracting structural signals from noisy high-throughput sequencing data: 通过计算模型来提取高通量测序数据中的分子结构信息 / 通过计算模型来提取高通量测序数据中的分子结构信息 / CUHK electronic theses & dissertations collection / Computational models for extracting structural signals from noisy high-throughput sequencing data: Tong guo ji suan mo xing lai ti qu gao tong liang ce xu shu ju zhong de fen zi jie gou xin xi / Tong guo ji suan mo xing lai ti qu gao tong liang ce xu shu ju zhong de fen zi jie gou xin xiJanuary 2015 (has links)
Hu, Xihao. / Thesis Ph.D. Chinese University of Hong Kong 2015. / Includes bibliographical references (leaves 147-161). / Abstracts also in Chinese. / Title from PDF title page (viewed on 26, October, 2016). / Hu, Xihao.
|
25 |
Characterization of protein families, sequence patterns, and functional annotations in large data setsBresell, Anders January 2008 (has links)
Bioinformatics involves storing, analyzing and making predictions on massive amounts of protein and nucleotide sequence data. The thesis consists of six papers and is focused on proteins. It describes the utilization of bioinformatics techniques to characterize protein families and to detect patterns in gene expression and in polypeptide occurrences. Two protein families were bioinformatically characterized - the membrane associated proteins in eicosanoid and glutathione metabolism (MAPEG) and the Tripartite motif (TRIM) protein families. In the study of the MAPEG super-family, application of different bioinformatic methods made it possible to characterize many new members leading to a doubling of the family size. Furthermore, the MAPEG members were subdivided into families. Remarkably, in six families with previously predominantly mammalian members, fish representatives were also now detected, which dated the origin of these families back to the Cambrium ”species explosion”, thus earlier than previously anticipated. Sequence comparisons made it possible to define diagnostic sequence patterns that can be used in genome annotations. Upon publication of several MAPEG structures, these patterns were confirmed to be part of the active sites. In the TRIM study, the bioinformatic analyses made it possible to subdivide the proteins into three subtypes and to characterize a large number of members. In addition, the analyses showed crucial structural dependencies between the RING and the B-box domains of the TRIM member Ro52. The linker region between the two domains, denoted RBL, is known to be disease associated. Now, an amphipathic helix was found to be a characteristic feature of the RBL region, which also was used to divide the family into three subtypes. The ontology annotation treebrowser (OAT) tool was developed to detect functional similarities or common concepts in long lists of proteins or genes, typically generated from proteomics or microarray experiments. OAT was the first annotation browser to include both Gene Ontology (GO) and Medical Subject Headings (MeSH) into the same framework. The complementarity of these two ontologies was demonstrated. OAT was used in the TRIM study to detect differences in functional annotations between the subtypes. In the oligopeptide study, we investigated pentapeptide patterns that were over- or under-represented in the current de facto standard database of protein knowledge and a set of completed genomes, compared to what could be expected from amino acid compositions. We found three predominant categories of patterns: (i) patterns originating from frequently occurring families, e.g. respiratory chain-associated proteins and translation machinery proteins; (ii) proteins with structurally and/or functionally favored patterns; (iii) multicopy species-specific retrotransposons, only found in the genome set. Such patterns may influence amino acid residue based prediction algorithms. These findings in the oligopeptide study were utilized for development of a new method that detects translated introns in unverified protein predictions, which are available in great numbers due to the many completed and ongoing genome projects. A new comprehensive database of protein sequences from completed genomes was developed, denoted genomeLKPG. This database was of central importance in the MAPEG, TRIM and oligopeptide studies. The new sequence database has also been proven useful in several other studies.
|
26 |
Genomic analysis by single cell flow sorting /Choe, Juno. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 179-191).
|
27 |
Manual alignment of IVS sequences and its implication in multiple sequence alignmentJiang, Yanan, master of cellular and molecular biology 15 February 2012 (has links)
It is recognized that an iterative comparative analysis of large-scale homologous RNAs significantly promote the understanding of an RNA family. The Gutell lab is renowned for maintaining high quality RNA sequence alignments and accurately predicted RNA secondary structures using this approach. While the current available alignment and structure data are mainly obtained by trained domain experts with extensive manual effort, it is highly desired that this process is automated and replicable given the exponentially growing number of RNA sequence data and the amount of time required for expert training. In this thesis, we learn the processes involved in comparative analysis by manually aligning a non-coding RNA family, IVS sequences, with the supervision of Dr. Gutell. Each process is then simulated by mathematical objective functions and algorithms. We also evaluate the current available RNA analysis packages that aim each of the processes. Finally, a new RNA sequence alignment algorithm incorporating structure information that can be extended for different alignment tasks is proposed. / text
|
28 |
Inverse Parametric Alignment for Accurate Biological Sequence ComparisonKim, Eagu January 2008 (has links)
For as long as biologists have been computing alignments of sequences, the question of what values to use for scoring substitutions and gaps has persisted. In practice, substitution scores are usually chosen by convention, and gap penalties are often found by trial and error. In contrast, a rigorous way to determine parameter values that are appropriate for aligning biological sequences is by solving the problem of Inverse Parametric Sequence Alignment. Given examples of biologically correct reference alignments, this is the problem of finding parameter values that make the examples score as close as possible to optimal alignments of their sequences. The reference alignments that are currently available contain regions where the alignment is not specified, which leads to a version of the problem with partial examples.In this dissertation, we develop a new polynomial-time algorithm for Inverse Parametric Sequence Alignment that is simple to implement, fast in practice, and can learn hundreds of parameters simultaneously from hundreds of examples. Computational results with partial examples show that best possible values for all 212 parameters of the standard alignment scoring model for protein sequences can be computed from 200 examples in 4 hours of computation on a standard desktop machine. We also consider a new scoring model with a small number of additional parameters that incorporates predicted secondary structure for the protein sequences. By learning parameter values for this new secondary-structure-based model, we can improve on the alignment accuracy of the standard model by as much as 15% for sequences with less than 25% identity.
|
29 |
Sequential and Parallel Algorithms for the Generalized Maximum Subarray ProblemBae, Sung Eun January 2007 (has links)
The maximum subarray problem (MSP) involves selection of a segment of consecutive array elements that has the largest possible sum over all other segments in a given array. The efficient algorithms for the MSP and related problems are expected to contribute to various applications in genomic sequence analysis, data mining or in computer vision etc. The MSP is a conceptually simple problem, and several linear time optimal algorithms for 1D version of the problem are already known. For 2D version, the currently known upper bounds are cubic or near-cubic time. For the wider applications, it would be interesting if multiple maximum subarrays are computed instead of just one, which motivates the work in the first half of the thesis. The generalized problem of K-maximum subarray involves finding K segments of the largest sum in sorted order. Two subcategories of the problem can be defined, which are K-overlapping maximum subarray problem (K-OMSP), and K-disjoint maximum subarray problem (K-DMSP). Studies on the K-OMSP have not been undertaken previously, hence the thesis explores various techniques to speed up the computation, and several new algorithms. The first algorithm for the 1D problem is of O(Kn) time, and increasingly efficient algorithms of O(K² + n logK) time, O((n+K) logK) time and O(n+K logmin(K, n)) time are presented. Considerations on extending these results to higher dimensions are made, which contributes to establishing O(n³) time for 2D version of the problem where K is bounded by a certain range. Ruzzo and Tompa studied the problem of all maximal scoring subsequences, whose definition is almost identical to that of the K-DMSP with a few subtle differences. Despite slight differences, their linear time algorithm is readily capable of computing the 1D K-DMSP, but it is not easily extended to higher dimensions. This observation motivates a new algorithm based on the tournament data structure, which is of O(n+K logmin(K, n)) worst-case time. The extended version of the new algorithm is capable of processing a 2D problem in O(n³ + min(K, n) · n² logmin(K, n)) time, that is O(n³) for K ≤ n/log n For the 2D MSP, the cubic time sequential computation is still expensive for practical purposes considering potential applications in computer vision and data mining. The second half of the thesis investigates a speed-up option through parallel computation. Previous parallel algorithms for the 2D MSP have huge demand for hardware resources, or their target parallel computation models are in the realm of pure theoretics. A nice compromise between speed and cost can be realized through utilizing a mesh topology. Two mesh algorithms for the 2D MSP with O(n) running time that require a network of size O(n²) are designed and analyzed, and various techniques are considered to maximize the practicality to their full potential.
|
30 |
Accessing genetic variation by microarray technology /Lindroos, Katarina, January 2002 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2002. / Härtill 5 uppsatser.
|
Page generated in 0.04 seconds