• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 6
  • 4
  • 1
  • Tagged with
  • 113
  • 113
  • 113
  • 56
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

MODELO BETA AUTORREGRESSIVO DE MÉDIAS MÓVEIS: CRITÉRIOS DE SELEÇÃO E APLICAÇÕES

Guerra, Renata Rojas 27 February 2015 (has links)
Time series modeling and forecasting has many applicability in scientific and technological researchs. Specifically about variables restricted to the interval (0; 1), which includes rates and proportions, the classical regression models could not be suitable because they assume normality. In this context, Rocha and Cribari-Neto (2009) proposed the beta autoregressive moving average (βARMA) model. It admits that the variable of interest is beta distributed. The beta distribution is more flexible than the normal distribution and also assumes that de dependent variable is restricted to the interval (0; 1). Through βARMA is possible to obtain results closer to the nature of the data. But just choose the better parametric model does not guarantee the accuracy of the fitted model. To identify the lags is also relevant to ensure the accuracy of the adjusted model. It is in this purpose that the model selection criteria, or information criteria, were developed. They compare the explanatory capacity of a group of models and select, among this group, the model which minimizes the information loss. In this context, this paper aims to evaluate by Monte Carlo simulations the performance of different selection criteria in βARMA model. Considering several scenarios and sample sizes, the selection criteria evaluated was AIC, BIC, HQ, AICc, BICc and HQc. The results indicate that BICc, HQ and HQc had the better performance identifying the true model among the candidate models. Using the selection criteria indicated by the simulation study, were also adjusted βARMA models to real data. It were considered the credit delinquency and the relationship between payroll loan and individual credit, both variables are from national financial system. It was adjusted the classical ARIMA models too. This models were compared with βARMA in applications. For both variables was found a reasonable proximity between the original data and the predicted by the models, with advantage for βARMA, as much inside as outside the sample. / A modelagem e a previsão de séries temporais é um campo de ampla aplicabilidade em diversas áreas científicas e tecnológicas. No âmbito específico de variáveis restritas ao intervalo (0; 1), como taxas e proporções, a utilização de modelos clássicos, que supõem normalidade da variável de interesse, pode não ser adequada. Neste contexto, Rocha e Cribari-Neto (2009) propuseram o modelo beta autorregressivo de médias móveis (β ARMA). Por assumir que a variável de interesse possui distribuição beta, que é uma distribuição mais flexível que a normal e com suporte restrito ao intervalo (0; 1), o βARMA possibilita modelagens e previsões mais condizentes com a natureza desses dados. Contudo, apenas a escolha do modelo paramétrico mais adequado não garante a acurácia do modelo ajustado. A identificação das defasagens a serem incluídas também exerce um papel de relevância neste sentido. É neste propósito que foram desenvolvidos os critérios de seleção de modelos, ou critérios de informação. Estes comparam as capacidades de explicação entre um grupo de modelos candidatos e selecionam, dentro deste grupo, o modelo que minimiza a perda de informações. Diante do exposto, este trabalho tem o objetivo de avaliar, via simulações de Monte Carlo, o desempenho de diferentes critérios de seleção no modelo βARMA. Por meio de um extenso estudo de simulação, considerando diversos cenários e tamanhos amostrais, foram avaliados os desempenhos em amostras de tamanho finito dos critérios AIC, BIC, HQ, AICc, BICc e HQc. Como resultados numéricos gerais, destaca-se que os critérios HQ, BICc e HQc foram os que alcançaram os melhores níveis de identificação do modelo verdadeiro. Utilizando os critérios de seleção sugeridos no estudo de simulação também foram ajustados modelos βARMA a dados reais. Para isso, foram considerados o índice de inadimplência de crédito e a relação entre o crédito consignado e o crédito total pessoa física, ambos do Sistema Financeiro Nacional. Também foram ajustados os clássicos modelos ARIMA comparativamente ao modelo βARMA na realização de previsões e posterior comparação entre os resultados de ambas as aplicações. Para as duas variáveis há um grau razoável de proximidade entre os dados originais e previstos, com superioridade do βARMA tanto dentro quanto fora do conjunto de observações utilizado para estimação dos modelos.
112

Análise da confiabilidade de estruturas sujeitas a controle passivo e ativo de vibrações / Reliability analysis of structures passively and actively controlled for vibration mitigation

Cunha, Leandro Rodrigues 13 September 2013 (has links)
FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Esta Dissertação versa sobre a análise de confiabilidade de estruturas sujeitas a controle ativo e passivo de vibrações, com ênfase na aplicação dos métodos de confiabilidade de primeira ordem (FORM, First Order Reliability Method) e segunda ordem (SORM, Second Order Reliability Method). Esses são usados para calcular o índice de confiabilidade e, consequentemente, a probabilidade de falha de estruturas, considerando variáveis aleatórias modeladas segundo funções densidade de probabilidade. Três técnicas de controle são avaliadas: controle ativo empregando atuadores piezelétricos; controle passivo por absorvedores dinâmicos de vibrações e controle passivo baseado em atuadores piezelétricos conectados a circuitos shunt ressonantes. Para cada caso, são definidas funções de estado limite que descrevem limites operacionais e/ou requisitos de projeto, cuja avaliação é baseada em respostas obtidas por meio de modelos de elementos finitos das estruturas analisadas. Para cada uma das técnicas de controle, aplicações numéricas dos métodos FORM e SORM são realizadas considerando como estrutura principal uma treliça plana. Para efeito de avaliação da precisão das estimações de confiabilidade fornecidas por estes métodos, foram também utilizadas Simulações de Monte Carlo. A partir dos resultados, são discutidas as características específicas observadas para cada técnica de controle. Em específico, para duas delas foram identificados domínios de segurança e de falha de formas atípicas, em cujos casos, fica inviabilizado o uso dos métodos FORM e SORM. De modo geral, os resultados confirmam a importância e a conveniência de se aplicarem os métodos de análise de confiabilidade a estruturas sujeitas a procedimentos de controle de vibrações. / This dissertation is devoted to the reliability analysis of structures subjected to active and passive vibration control, with emphasis on the use of First Order Reliability Method (FORM) and Second Order Reliability Method (SORM). These methods are used to evaluate the reliability indices and the associated failure probability, considering that the random variables are modeled by probability density functions. Three techniques of vibration control are considered, namely: active control using PZT stack actuators, passive control based on dynamic vibration absorbers, and passive control based on piezoelectric transducers connected to resonant shunt circuits. For each technique, limit state functions are defined related to the operational limitations or design requirements. Their evaluation is made from structural responses obtained from finite element models. For each control technique, numerical applications of FORM and SORM are carried-out for a two-dimensional truss, defined as the structure of interest. To assess the accuracy of the reliability estimations provided by those methods, Monte Carlo Simulations are also performed. The numerical results enable to put in evidence specific characteristics of each control technique as related to reliability. Specifically, for two of them it is verified the occurrence of atypical geometrical forms of the safety and failure domains, which preclude the use of FORM and SORM. In general, the results confirm the importance and convenience of performing reliability assessment of structures subjected to vibration control procedures. / Dissertação (Mestrado)
113

Essays on multivariate generalized Birnbaum-Saunders methods

MARCHANT FUENTES, Carolina Ivonne 31 October 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-04-26T17:07:37Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Carolina Marchant.pdf: 5792192 bytes, checksum: adbd82c79b286d2fe2470b7955e6a9ed (MD5) / Made available in DSpace on 2017-04-26T17:07:38Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Carolina Marchant.pdf: 5792192 bytes, checksum: adbd82c79b286d2fe2470b7955e6a9ed (MD5) Previous issue date: 2016-10-31 / CAPES; BOLSA DO CHILE. / In the last decades, univariate Birnbaum-Saunders models have received considerable attention in the literature. These models have been widely studied and applied to fatigue, but they have also been applied to other areas of the knowledge. In such areas, it is often necessary to model several variables simultaneously. If these variables are correlated, individual analyses for each variable can lead to erroneous results. Multivariate regression models are a useful tool of the multivariate analysis, which takes into account the correlation between variables. In addition, diagnostic analysis is an important aspect to be considered in the statistical modeling. Furthermore, multivariate quality control charts are powerful and simple visual tools to determine whether a multivariate process is in control or out of control. A multivariate control chart shows how several variables jointly affect a process. First, we propose, derive and characterize multivariate generalized logarithmic Birnbaum-Saunders distributions. Also, we propose new multivariate generalized Birnbaum-Saunders regression models. We use the method of maximum likelihood estimation to estimate their parameters through the expectation-maximization algorithm. We carry out a simulation study to evaluate the performance of the corresponding estimators based on the Monte Carlo method. We validate the proposed models with a regression analysis of real-world multivariate fatigue data. Second, we conduct a diagnostic analysis for multivariate generalized Birnbaum-Saunders regression models. We consider the Mahalanobis distance as a global influence measure to detect multivariate outliers and use it for evaluating the adequacy of the distributional assumption. Moreover, we consider the local influence method and study how a perturbation may impact on the estimation of model parameters. We implement the obtained results in the R software, which are illustrated with real-world multivariate biomaterials data. Third and finally, we develop a robust methodology based on multivariate quality control charts for generalized Birnbaum-Saunders distributions with the Hotelling statistic. We use the parametric bootstrap method to obtain the distribution of this statistic. A Monte Carlo simulation study is conducted to evaluate the proposed methodology, which reports its performance to provide earlier alerts of out-of-control conditions. An illustration with air quality real-world data of Santiago-Chile is provided. This illustration shows that the proposed methodology can be useful for alerting episodes of extreme air pollution. / Nas últimas décadas, o modelo Birnbaum-Saunders univariado recebeu considerável atenção na literatura. Esse modelo tem sido amplamente estudado e aplicado inicialmente à modelagem de fadiga de materiais. Com o passar dos anos surgiram trabalhos com aplicações em outras áreas do conhecimento. Em muitas das aplicações é necessário modelar diversas variáveis simultaneamente incorporando a correlação entre elas. Os modelos de regressão multivariados são uma ferramenta útil de análise multivariada, que leva em conta a correlação entre as variáveis de resposta. A análise de diagnóstico é um aspecto importante a ser considerado no modelo estatístico e verifica as suposições adotadas como também sua sensibilidade. Além disso, os gráficos de controle de qualidade multivariados são ferramentas visuais eficientes e simples para determinar se um processo multivariado está ou não fora de controle. Este gráfico mostra como diversas variáveis afetam conjuntamente um processo. Primeiro, propomos, derivamos e caracterizamos as distribuições Birnbaum-Saunders generalizadas logarítmicas multivariadas. Em seguida, propomos um modelo de regressão Birnbaum-Saunders generalizado multivariado. Métodos para estimação dos parâmetros do modelo, tal como o método de máxima verossimilhança baseado no algoritmo EM, foram desenvolvidos. Estudos de simulação de Monte Carlo foram realizados para avaliar o desempenho dos estimadores propostos. Segundo, realizamos uma análise de diagnóstico para modelos de regressão Birnbaum-Saunders generalizados multivariados. Consideramos a distância de Mahalanobis como medida de influência global de detecção de outliers multivariados utilizando-a para avaliar a adequacidade do modelo. Além disso, desenvolvemos medidas de diagnósticos baseadas em influência local sob alguns esquemas de perturbações. Implementamos a metodologia apresentada no software R, e ilustramos com dados reais multivariados de biomateriais. Terceiro, e finalmente, desenvolvemos uma metodologia robusta baseada em gráficos de controle de qualidade multivariados para a distribuição Birnbaum-Saunders generalizada usando a estatística de Hotelling. Baseado no método bootstrap paramétrico encontramos aproximações da distribuição desta estatística e obtivemos limites de controle para o gráfico proposto. Realizamos um estudo de simulação de Monte Carlo para avaliar a metodologia proposta indicando seu bom desempenho para fornecer alertas precoces de processos fora de controle. Uma ilustração com dados reais de qualidade do ar de Santiago-Chile é fornecida. Essa ilustração mostra que a metodologia proposta pode ser útil para alertar sobre episódios de poluição extrema do ar, evitando efeitos adversos na saúde humana.

Page generated in 0.0326 seconds