231 |
Contributions à la simulation temps réel des grands réseaux électriques modernesLe-Huy, Philippe 10 February 2024 (has links)
La simulation des phénomènes électromagnétiques transitoires (EMT) est capitale dans plusieurs spécialisations de l'électrotechnique pour analyser, comprendre et prévoir divers comportements de réseaux électriques ou de dispositifs d'électronique de puissance commutée. Ces simulations sont typiquement réalisées sans contraintes temporelles : la simulation d'un événement peut être plus rapide ou plus lente que l'événement lui-même. Toutefois, dans un contexte de validation de systèmes de contrôle réel, les simulations doivent être effectuées en temps réel afin de soumettre l'équipement réel à des signaux réalistes avec le bon contenu spectral sur la plage fréquentielle requise. Une simulation opérant avec un pas de temps Tₛ est dite en temps réel si elle est en mesure de produire une nouvelle solution complète et d'effectuer tous les services nécessaires (entrées/sorties, acquisition, monitorage, etc.) en un laps de temps de Tₛ, et ce de manière maintenue et périodique. Les besoins de simulation temps réel ne cessent de croître pour étudier l'intégration des différents dispositifs d'électronique de puissance avec système de contrôle et protection qui prolifèrent sur les réseaux électriques et pour évaluer leurs interactions potentielles. Les réseaux à simuler sont de plus en plus vastes parce que ces dispositifs sont de plus en plus distribués spatialement. De plus, les modélisations sont de plus en plus complexes afin de représenter le plus fidèlement possible les phénomènes réels sur des plages de fréquence de plus en plus larges. Il existe donc un besoin criant d'augmenter la capacité de simulation temps réel. Pour y arriver, plusieurs groupes de recherche explorent l'utilisation d'unités de traitement alternatives telles les FPGA et GPU pour complémenter ou remplacer les processeurs standards tandis que d'autres explorent des modélisations et techniques pour augmenter la capacité de simulation des processeurs standards tels les équivalents fréquentiels, la simulation multitaux et la simulation hybride. Toutefois, la majorité de ces efforts vise l'augmentation des capacités en temps différé et non en temps réel. Afin de combler ce décalage, le présent ouvrage vise l'augmentation des capacités de simulation en temps réel des processeurs standards pour les grands et très grands réseaux électriques modernes c'est-à-dire où l'électronique de puissance foisonne et impose des pas de temps de plus en plus faibles. Deux avenues sont explorées : le parallélisme massif et l'augmentation de capacité par l'utilisation de simulation à taux multiples, qui mènera à la simulation hybride. En premier lieu, le parallélisme massif de la simulation temps réel est présenté. La puissance de calcul de superordinateurs n'est pas triviale à canaliser pour la simulation EMT temps réel à cause des difficultés de synchronisation. Une fois maîtrisé, le Superdome Flex de HPE a effectué la simulation en temps réel d'un réseau de 16432 nœuds électriques avec 372 cœurs de calcul opérant avec un pas de temps de 17 µs. Ces travaux sur les plateformes matérielles a également permis de découvrir les excellentes performances temps réel d'ordinateurs personnels ordinaires bas de gamme (RTPC) et très accessibles, ouvrant la voie à une démocratisation de la simulation temps réel. En second lieu, le cadre de simulation multitaux temps réel est présenté ainsi que les améliorations nécessaires à son bon fonctionnement. En simulant avec des taux plus lents que le taux de base EMT, il est possible d'augmenter substantiellement la capacité de calcul d'une plateforme donnée. Des simulations avec des pas de temps habituellement réservés aux FPGA (5 et 10 µs) sont effectuées sur de modestes RTPC En exploitant le cadre de simulation multitaux, il est ensuite montré comment la simulation hybride EMT/stabilité transitoire permet d'augmenter drastiquement (d'un facteur 23 à 10 µs et 1 ms) les capacités de simulation en temps réel d'un cœur de calcul. Toutefois, ce gain se fait au prix d'une perte de l'interaction harmonique entre le système EMT et celui de stabilité transitoire. L'implémentation temps réel de cette simulation hybride en temps réel est facilitée par l'utilisation d'une interface basée sur une modélisation hybride des lignes de transport et d'un protocole d'interaction parallèle, ce qui diffère de la méthode classique des images et des protocoles itératifs sophistiqués. Finalement, ces trois approches sont comparées : selon la situation, l'une de ces approches sera à préconiser selon l'ampleur de la simulation, la plage fréquentielle désirée et la quantité de ressources temps réel disponible. / The simulation of transient electromagnetic (EMT) phenomena is essential in several specializations of electrical engineering to analyze, understand and predict various behaviors of power systems and switched power electronic devices. These simulations are typically performed without time constraint: the simulation of an event can be faster or slower than the real event itself. However, in the context of validating real control systems, simulations must be performed in real-time in order to subject real equipment to realistic signals with the right spectral content over the required frequency range. A simulation operating with a time step Tₛ is said to be in real-time if it is able to produce a complete new solution and perform all the necessary services (inputs/outputs, acquisition, monitoring, etc.) in a period of time of Tₛ in a maintained and periodic manner. The need for real-time simulation continues to grow to study the integration of the various power electronic devices with control and protection systems that proliferate in power systems and to assess their potential interactions. The power systems to be simulated are increasingly vast because the spatial distribution of these devices is increasing. Moreover, model complexity is ever increasing in order to represent as faithfully as possible the real phenomena over increasingly wide frequency ranges. There is therefore a crying need to increase the capacity for real-time simulation. Several research groups are exploring the use of alternative processing units such as FPGAs and GPUs to complement or replace standard processors, while others are exploring models and techniques to increase the simulation capacity of standard processors such as frequency equivalents, multi-rate simulation and hybrid simulation. However, the majority of these efforts are aimed at increasing capacity in offline simulations, not for real time. In order to bridge this gap, this work aims to increase the real-time simulation capabilities of standard processors for large and very large modern power systems, i.e. where power electronics abound and impose smaller and smaller time steps. Two research avenues are explored: massive parallelism and increasing capacity through the use of multi-rate simulation, which will lead to hybrid simulation. First, the massive parallelism of real-time simulation is presented. The computing power of supercomputers is not trivial to harness for real-time EMT simulations because of synchronization difficulties. Once mastered, the HPE Superdome Flex performed real-time simulation of a network of 16,432 power nodes with 372 computer cores operating at a time step of 17 µs. This work on hardware platforms has also made it possible to discover the excellent real-time performance of ordinary low-end, but very accessible, personal computers (RTPC), paving the way for a democratization of real-time simulation. Secondly, the real-time multi-rate simulation framework is presented as well as the improvements necessary for its proper functioning. By simulating with rates slower than the base EMT rate, it is possible to substantially increase the computational capacity of a given platform. Simulations with time steps usually reserved for FPGAs (5 and 10 µs) are carried out on modest RTPCs. By exploiting the multi-rate simulation framework, it is then shown how the EMT / transient stability hybrid simulation can drastically increase (by a factor of 23 with 10 µs and 1 ms) the real-time simulation capacities of a computer core. However, this gain comes at the cost of a loss of the harmonic interaction between the EMT and transient stability systems. The real-time implementation of this real-time hybrid simulation is facilitated by the use of an interface based on hybrid transmission line modeling and a simple parallel interaction protocol, which differs from the classic equivalent image method and sophisticated iterative interaction protocols. Finally, these three approaches are compared: depending on the situation, one of these approaches will be more suited depending on the desired size of the simulation, the desired frequency range and the amount of available real-time resources.
|
232 |
Étude numérique de l'importance du cisaillement de vitesse dans le premier stade de formation des molécules dans le milieu interstellaireScholtys, Jeremy 24 April 2018 (has links)
Du point de vue de l’évolution galactique, les nuages moléculaires sont des structures importantes puisque les étoiles y naissent et en héritent leurs propriétés. La formation des molécules à partir du gaz atomique neutre, omniprésent dans le disque de la Galaxie, s’avère donc une étape-clé dans le processus de formation stellaire. Pour générer rapidement des conditions favorables à la chimie moléculaire, i.e. du gaz froid et dense protégé du champ de rayonnement ionisant de la Galaxie, deux modèles de simulations numériques sont envisagés : les écoulements convergents de gaz atomique neutre chaud (WNM) et les écoulements de WNM dont la turbulence est forcée dans l’espace de Fourier. Combinée avec la compression fournie par ces écoulements, l’instabilité thermique résultante des processus de chauffage et de refroidissement du milieu interstellaire engendre des structures de gaz atomique neutre froid (CNM) qui sont des foyers potentiels de formation moléculaire. Dans le même ordre d’idées, des observations récentes de nuages diffus à haute latitude galactique ont montré une corrélation spatiale entre de grands cisaillements de vitesse dans les spectres de la raie à 21 cm de l’hydrogène atomique (HI) et la présence de pics d’émission de molécules telles que le monoxyde de carbone (CO) ou encore l’hydroxyde (OH). Partant de l’hypothèse que ce cisaillement favorise la formation des molécules, des simulations numériques à partir des deux modèles mentionnés précédemment ont été effectuées pour vérifier si la grandeur de ces cisaillements pouvait être reproduite. Une comparaison des deux modèles est effectuée quant à leur capacité à reproduire la grandeur des cisaillements ainsi que les propriétés des structures de gaz froid dans l’environnement solaire et à haute latitude galactique. / From a galactic evolution standpoint, molecular clouds are important structures since they give birth to stars and their properties. Molecule formation from the neutral atomic medium, which is ubiquitous in the Galactic disc, is therefore a key step in the stellar formation process. To rapidly generate favorable conditions for molecules to appear, i.e. to obtain cold and dense gas shielded from the ionizing radiation field of the Galaxy, two numerical simulation models are considered: warm neutral atomic gas (WNM) colliding flows and WNM flows with turbulence driven in Fourier space. Together with the compression provided by these flows, the thermal instability arising from the cooling and heating processes in the interstellar medium produces long lived cold atomic neutral gas (CNM) structures that are potentiel molecular formation sites. Recent observations of diffuse gas at high galactic latitude were undertaken and display CO and OH emission peaks wherever large velocity shears in atomic hydrogen (HI) spectra are present or where HI components merge. Numerical simulations with the two models mentionned above were undertaken in order to investigate whether the amplitude of these velocity shears can be reproduced or not and to examine how they are related to cold gas. Both cloud formation models are then compared to each other and with observations of cold gas structures in the solar neighbourhood and at high galactic latitude.
|
233 |
Developping 2D and 3D multiagent geosimulation, a method and its application : the case of shopping behavior geosimulation in Square One Mall (Toronto)Ali, Walid 12 April 2018 (has links)
Dans cette thèse, nous proposons une méthode générique de développement d‘applications de géosimulation, en 2D et 3D, de divers phénomènes ou comportements complexes (exp. comportements humains) dans des environnements géographiques. Notre travail vise à résoudre quelques problèmes dans le domaine de la simulation informatique et, plus particulièrement, dans le domaine de la simulation multiagent. Les principaux problèmes que nous visons à résoudre dans cette thèse sont: - Absence de méthodes génériques de développement de simulations multiagent de phénomènes ou comportements dans des environnements géographiques. - Manque de techniques de collecte et d’analyse des données spatiales et non-spatiales : (1) données en entrée de la géosimulation multiagent (qui sont utilisées pour alimenter la simulation) ou (2) données en sortie de la géosimulation (qui sont générées par cette simulation). - Absence d’un prototype de géosimulation qui peut être, à la fois, ‘réaliste’ et ‘utile’ pour simuler le comportement du magasinage des êtres humains dans un environnement georéférencé représentant un centre commercial. L’idée principale de notre thèse consiste en: (1) la création d’une méthode générique de développement de géosimulations multiagents, en 2D et 3D, des phénomènes complexes (impliquant par exemple des êtres humains) dans des environnements géographiques et (2) l’application de cette méthode en utilisant le comportement de magasinage dans un centre commercial comme cas d’illustration. Cette méthode contient dix étapes qui sont résumées comme suit : Les trois premières étapes ont pour objectifs de (1) définir les besoins des utilisateurs finaux de la géosimulation, (2) d’identifier les caractéristiques du phénomène à simuler ainsi que celles de son environnement, et (3) de créer un modèle à base d’agents représentent le phénomène à simuler ainsi que son environnement. La quatrième étape vise à sélectionner l’outil de simulation qui va être utilisé pour exécuter les modèles de simulation. Dans la cinquième étape, nous collectons les données spatiales et non-spatiales qui doivent servir à alimenter les modèles de géosimulation. Dans cette étape nous effectuons quelques analyses des données collectées afin de déterminer quelques patrons de comportement du phénomène à simuler. Dans la sixième étape, nous développons le prototype de géosimulation en exécutant les modèles de géosimulation dans la plateforme sélectionnée tout en utilisant les données qui ont été collectées et analysées. Dans la septième étape, nous utilisons une autre fois la technologie multiagent afin de collecter des données spatiales et non-spatiales en sortie de la géosimulation. Ces données contiennent des informations pertinentes concernant le déroulement de la géosimulation. Dans cette étape nous utilisons diverses techniques d’analyse de données spatiales et non-spatiales afin d’analyser ces données. Dans l’illustration de notre méthode nous avons proposé l’utilisation de techniques d’analyse suivantes: techniques/outils statistiques et mathématiques traditionnelles (ou classiques), notre propre technique/outil et d’analyse des données spatiales et non-spatiales, les techniques d’analyse OLAP (On Line Analytical Processing) et SOLAP (Spatial On Line Analytical Processing). Afin d’assurer la fiabilité des modèles de simulation, nous proposons dans notre méthode une huitième étape qui vise à vérifier et valider les modèles de géosimulation. Dans la neuvième étape, nous testons et nous documentons le prototype de géosimulation. Finalement, dans la dixième étape, les utilisateurs finaux peuvent utiliser la géosimulation multiagent comme outil d’aide à la décision. Ces décisions peuvent concerner le phénomène à simuler ou la configuration spatiale de son environnement. Les principales contributions de cette thèse sont : - Une nouvelle méthode de développement d’applications de géosimulation multiagent, en 2D et 3D, des phénomènes complexes (tels que ceux qui impliquent des comportements humains) dans des environnements géographiques. - Quelques modèles représentant le comportement du magasinage dans un centre commercial qui se basent sur une recherche bibliographique solide dans divers domaines de recherche: Une version intégrée du modèle du comportement du magasinage dans un centre commercial, Deux versions du modèle multiagent du comportement du magasinage (la première est indépendante de la plate-forme qui va être utilisée pour exécuter la simulation et la deuxième est dépendante). - Une application de la méthode proposée en utilisant le comportement du magasinage dans un centre commercial comme cas d’illustration. Le cas de test qui a servi pour développer le prototype de simulation est le centre commercial Square One (Toronto). Ce prototype ‘réaliste’ et ‘utile’ est intitulé Mall_MAGS. - Une technique à base de questionnaire pour collecter des données spatiales et non-spatiales qui servent à alimenter des géosimulations. - Un outil qui permet de saisir, simultanément, des données spatiales et non-spatiales qui vont alimenter des géosimulations. - Une technique à base d’agents qui sert à collecter des donnees spatiales et non-spatiales en provenance de la géosimulation en utilisant le paradigme d’agents, ainsi qu’un outil d’analyse de ces données. - Un couplage des techniques d’analyse et d’exploration de données OLAP (On Line Analytical Processing)/SOLAP (Spatial On Line Analytical Processing) et de notre prototype de géosimulation du comportement du magasinage des êtres humains dans un centre commercial. Ce couplage sert à analyser et à explorer les données générées par ce prototype. / In this thesis, we propose a generic method to develop 2D and 3D multiagent geosimulation of complex behaviors (human behaviors) in geographic environments. Our work aims at solving some problems in the field of computer simulation in general and the field of multiagent simulation. These problems are are: - The absence of methods to develop 2D-3D multiagent simulation of phenomena in geographic environments. - The absence of gathering and analysis techniques that can be used to collect and analyze spatial and non-spatial data to feed the geosimulation models (input data) and to analyze data generated by geosimulations (output data). - The absence of a ‘realistic’ and ‘useful’ geosimulation prototype of customer’s shopping behavior in a mall. The main idea of our work is to create a generic method to develop 2D and 3D multiagent geosimulations of phenomena in geographic environments. This method contains ten steps, which are summarized as follows: The first three steps of the method aim to (1) define the geosimulation users’ needs, (2) identify the characteristics of the phenomenon to be simulated, as well as its environment, and (3) create the geosimulation models using the multiagent paradigm. The fourth step aims to select the simulation tool/environment/language that is used to develop the geosimulation. In step five, we collect the data which feeds the geosimulation models. In this step, we analyze the collected information in order to define some patterns of the behaviors of the phenomenon to be simulated. In the sixth step, we develop the geosimulation prototype, on the selected simulation platform, using the collected data. In step seven, we collect information about the course of the simulation, once again using the multiagent paradigm. In this step, we deal with the non-spatial and spatial data, generated by the simulation using several analysis techniques: Classical or traditional analysis techniques, our own analysis technique/tool, and the OLAP (On Line Analytical Processing) and SOLAP (Spatial On Line Analytical Processing) technique. In order to ensure the correctness of the simulation models, as well as to enhance the confidence of the simulation users, we need to verify and validate the simulation models. The verification and validation are the purpose of the eighth step of our method. In the ninth step, we test and document the simulation, while in the last step users can use the multiagent geosimulator in order to make efficient spatial decisions about the phenomenon to be simulated or about the configuration of the simulated environment. The main contributions of this thesis are: - A new method to develop 2D-3D multiagent geosimulations of complex behaviors (human behaviors) in geographic environments. - Some models dealing with the shopping behavior in a mall: an initial version of the shopping behavior model based upon a large literature review, an initial version of the multiagent model which is independent of the tool used to execute the simulation, and an agent-based model created according to the selected platform used to develop the geosimulation. All these models are related to the individual shoppers and to the simulated environment representing the mall. - An illustration of the method using the shopping behavior in a mall as a case study and the Square One mall in Toronto as a case test. This gave birth to a ‘realistic’ and ‘useful’ geosimulation prototype called Mall_MAGS. - A new survey-based technique to gather spatial and non-spatial data to feed the geosimulation models. - A tool to digitalize the spatial and non-spatial gathered data. - A new agent-based technique to collect output data from the geosimulation prototype. - A new analysis technique and tool to analyze spatial and non-spatial data generated by the geosimulation. - A coupling of the OLAP (On Line Analytical Processing) and SOLAP (Spatial On Line Analytical Processing) analysis techniques with the shopping behavior geosimulation prototype in order to explore and analyze the geosimulation outputs.
|
234 |
Évolution d'un contrôleur de robot mobile visuellement référencéDupuis, Jean-François 12 April 2018 (has links)
Ce mémoire présente les résultats d'une recherche ayant pour but d'explorer l'utilisation d'un simulateur pour accélérer l'évolution de contrôleurs d'un robot mobile exécutant une tâche visuelle au sein d'un environnement de réalité augmentée. La tâche retenue pour effectuer la démonstration de l'intégration du système évolutionnaire consiste à suivre une ligne au sol à l'aide d'une caméra. La réalisation de ce projet a nécessité le développement d'une plate-forme de robot mobile compacte, d'une capacité de calcul suffisante pour être complètement autonome. Ce robot est destiné à un environnement synthétique généré à l'aide d'un projecteur à cristaux liquides. La modélisation du robot dans cet environnement a permis l'élaboration d'un simulateur pouvant être déployé sur une grappe d'ordinateurs permettant une accélération considérable de l'évolution grâce à la parallélisation de l'évaluation de la performance des contrôleurs. Les meilleurs contrôleurs obtenus au terme de l'évolution, employant la technique de programmation génétique, ont été transférés avec succès sur le robot.
|
235 |
Premiers pas d'une validation de l'extension du formalisme de Richards-Wolf et poursuite de sa généralisationBorne, Jeck 27 May 2019 (has links)
Ce projet de maîtrise s’insère dans l’effort de modélisation entourant le phénomène de focalisation extrême amorcé dans les groupes de recherche des professeurs Thibault et Piché. Le mémoire présente d’abord une comparaison entre le formalisme de Richards-Wolf étendu (ERWT) et les solutions numériques de propagation d’onde électromagnétique obtenues à l’aide d’un algorithme FDTD. Les résultats montrent que l’utilisation du formalisme étendu permet de traiter le processus de focalisation non paraxiale pour une gamme étendue de surfaces réfléchissantes avec peu de variations entre les deux techniques. Les limitations intrinsèques à l’algorithme utilisé et la divergence de la fonction d’illumination imparfaitement traitée pourraient expliquer les déviations observées. Ensuite, cherchant à améliorer le traitement de cette illumination, le processus de focalisation inverse a été développé. En effet, il est possible de formuler une inversion du formalisme de Richards-Wolf (RWT) pour des systèmes à symétrie de révolution en définissant l’illumination à polarisation radiale en fonction d’une distribution recherchée au foyer selon un seul axe (radial ou sur l’axe optique). En utilisant un seul axe, le problème de surdéfinir le champ ne se pose pas et un critère est fourni afin de conclure de la validité physique du patron d’illumination calculé. Avec la méthode proposée, il est souvent possible d’obtenir des solutions analytiques qui sont essentielles à l’obtention d’une meilleure compréhension des différences entre les modèles paraxiaux et non paraxiaux. De plus, il est facile d’adapter cette dernière afin d’obtenir des solutions numériques pour des problèmes plus complexes. Ainsi, les figures d’illumination calculées peuvent directement être utilisées et sont particulièrement utiles lorsque la dimension optimale de la tâche focale pour une application donnée est connue. Un article a été soumis basé sur ces travaux. Enfin, une généralisation culminant avec le traitement de surfaces asphériques avec aberrations est présentée en adaptant le formalisme étendu (ERWT). Cet ajout au formalisme permet d’envisager de modéliser des surfaces complexes et possiblement hors de portée des corrections seulement en phase usuellement utilisées dans la littérature. Cependant, ces ajouts au formalisme complexifient de manière appréciable les intégrales de diffraction de Richards-Wolf. Finalement, une démonstration de la procédure a été effectuée pour un miroir parabolique comportant un léger tilt. / This project is part of the modeling effort around extreme focusing phenomenon taking place in the research groups of professor Thibault and Piché. At first, this thesis shows the comparison between the modeling by the extended Richards-Wolf formalism (ERWT) and by FDTD simulations of the field propagation. Both methods used for computing the electromagnetic distribution resulting from the reflection on a mirror in a non paraxial setup show satisfactory agreement. In fact, the extended formalism is suited to accurately model a large spectrum of reflecting surfaces such as elliptic mirrors, for which the description is not possible with the classical formalism of Richards-Wolf. Some intrinsic limitations of the used FDTD algorithm and the divergence of the illumination could explained the observed variations. Then, looking to solve the illumination problem, the inversion formalism has been developed. The integral of the Richards-Wolf formalism (RWT) of an axisymetric optical system can be inverted to define the radially polarized illumination pattern as a function of the electromagnetic distribution at the focus over a given axis (radial or the optical axis). Using only one axis at the focus, the field distribution is not over defined and a criterion is given to check the physical validity of the obtained illumination pattern. The method gives numerical or, in some cases, analytic solutions that can be used to obtain the optimized focal pattern fora given application. The analytical solutions are relevant as they can intuitively show the differences between the paraxial and non paraxial regimes. An article has been submitted on this particular subject. Finally, this thesis describes the generalization of the extended formalism to cover aspheric surfaces with aberrations. The procedure gives the possibility to accurately model complex reflecting surfaces that would otherwise be out of reach of the formalism. However, the complexity of the formalism increases compared to the initial diffraction integral. The proposed technique is demonstrated with a slightly tilted parabolic mirror.
|
236 |
Thermal conductivity of carbon nanotubes from equilibrium molecular dynamics simulations : sensitivity to modeling and simulation parametersDallaire, Jonathan 18 April 2018 (has links)
Le présent travail vise à apporter certaines pistes de solution concernant certaines controverses sur l'estimation de la conductivité thermique des nanotubes de carbone par simulation de dynamique moléculaire à l'équilibre avec conditions aux limites périodiques et la formule de Green-Kubo. Entre autre, différents auteurs obtiennent des résultats pouvant parfois varier de plusieurs ordres de grandeur pour un même type de nanotube. H n'y a toutefois que très peu d'études jusqu'à ce jour tentant d'expliquer ces contradictions. Dans la première partie du projet, on détermine les paramètres numériques pouvant influencer la conductivité thermique calculée avec une méthode de dynamique moléculaire à l'équilibre. On effectue ensuite une analyse de sensibilité pour plusieurs de ces paramètres afin de déterminer de quelle manière ils influencent la conductivité thermique calculée (chapitres 3 et 4). Finalement, on présente une étude sur le phénomène de fréquence de coupure lors du calcul de la conductivité thermique (chapitre 5).
|
237 |
Simulation du ratio coût-efficacité des scénarios de dépistage de l'hémochromatoseGagné, Geneviève 13 April 2018 (has links)
Ce projet a pour but d'identifier les scénarios de dépistage de l'hémochromatose héréditaire (HH) les plus coûts-efficaces (CE) pour la population québécoise. Pour y arriver, nous avons construit un simulateur renfermant un générateur de scénarios de dépistage composés de tests génétiques et biochimiques et un générateur de populations virtuelles avec des caractéristiques démographiques, génétiques et phénotypiques de la population québécoise. La simulation des dépistages permet d'estimer l'efficacité (la durée de vie) et les coûts des services de santé utilisés. Les résultats montrent que la stratégie la plus CE est un dépistage composé du test UIBC ± unsaturated iron binding capacity ¿, du test de saturation de la transferrine et d'un test de confirmation par PCR (du gène HFE).
|
238 |
La géosimulation orientée agent : un support pour la planification dans le monde réelSahli, Nabil 11 April 2018 (has links)
La planification devient complexe quand il s’agit de gérer des situations incertaines. Prédire de façon précise est une tâche fastidieuse pour les planificateurs humains. L’approche Simulation-Based Planning consiste à associer la planification à la simulation. Chaque plan généré est simulé afin d’être testé et évalué. Le plan le plus approprié est alors retenu. Cependant, le problème est encore plus complexe lorsque viennent s’ajouter des contraintes spatiales. Par exemple, lors d’un feu de forêt, des bulldozers doivent construire une ligne d’arrêt pour arrêter la propagation des feux. Ils doivent alors tenir compte non seulement de l’avancée des feux mais aussi des caractéristiques du terrain afin de pouvoir avancer plus facilement. Nous proposons une approche de géosimulation basée sur les agents et qui a pour but d’assister la planification dans un espace réel, à large échelle géographique et surtout à forte composante spatiale. Un feu de forêt est un problème typique nécessitant une planification dans un monde réel incertain et soumis à de fortes contraintes spatiales. Nous illustrons donc notre approche (nommée ENCASMA) sur le problème des feux de forêts. L’approche consiste à établir un parallélisme entre l’Environnement Réel ER (p.ex. une forêt incendiée) et un Environnement de Simulation ES (p.ex. une reproduction virtuelle de la forêt incendiée). Pour garantir un niveau acceptable de réalisme, les données spatiales utilisées dans l’ES doivent absolument provenir d’un SIG (Système d’information Géographique). Les planificateurs réels comme les pompiers ou les bulldozers sont simulés par des agents logiciels qui raisonnent sur l’espace modélisé par l’ES. Pour une meilleure sensibilité spatiale (pour tenir compte de toutes les contraintes du terrain), les agents logiciels sont dotés de capacités avancées telles que la perception. En utilisant une approche par géosimulation multiagent, nous pouvons générer une simulation réaliste du plan à exécuter. Les décideurs humains peuvent visualiser les conséquences probables de l’exécution de ce plan. Ils peuvent ainsi évaluer le plan et éventuellement l’ajuster avant son exécution effective (sur le terrain). Quand le plan est en cours d’exécution, et afin de garantir la cohérence des données entre l’ER et l’ES, nous gardons trace sur l’ES des positions (sur l’ER) des planificateurs réels (en utilisant les technologies du positionnement géoréférencé). Nous relançons la planification du reste du plan à partir de la position courante de planificateur réel, et ce de façon périodique. Ceci est fait dans le but d’anticiper tout problème qui pourrait survenir à cause de l’aspect dynamique de l’ER. Nous améliorons ainsi le processus classique de l’approche DCP (Distributed Continual Planning). Enfin, les agents de l’ES doivent replanifier aussitôt qu’un événement imprévu est rapporté. Étant donné que les plans générés dans le cas étudié (feux de forêts) sont essentiellement des chemins, nous proposons également une approche basée sur la géosimulation orientée agent pour résoudre des problèmes particuliers de Pathfinding (recherche de chemin). De plus, notre approche souligne les avantages qu’apporte la géosimulation orientée agent à la collaboration entre agents humains et agents logiciels. Plus précisément, elle démontre : • Comment la cognition spatiale des agents logiciels sensibles à l’espace peut être complémentaire avec la cognition spatiale des planificateurs humains. • Comment la géosimulation orientée agent peut complémenter les capacités humaines de planification lors de la résolution de problèmes complexes. Finalement, pour appliquer notre approche au cas des feux de forêts, nous avons utilisé MAGS comme plate-forme de géosimulation et Prometheus comme simulateur du feu. Les principales contributions de cette thèse sont : 1. Une architecture (ENCASMA) originale pour la conception et l’implémentation d’applications (typiquement des applications de lutte contre les désastres naturels) dans un espace géographique réel à grande échelle et dynamique. 2. Une approche basée sur les agents logiciels pour des problèmes de Pathfinding (recherche de chemin) particuliers (dans un environnement réel et à forte composante spatiale, soumis à des contraintes qualitatives). 3. Une amélioration de l’approche de planification DCP (plus particulièrement le processus de continuité) afin de remédier à certaines limites de la DCP classique. 4. Une solution pratique pour un problème réel et complexe : la lutte contre les feux de forêts. Cette nouvelle solution permet aux experts du domaine de mieux planifier d’avance les actions de lutte et aussi de surveiller l’exécution du plan en temps réel. / Planning becomes complex when addressing uncertain situations. Accurate predictions remain a hard task for human planners. The Simulation-Based Planning approach consists in associating planning and simulation. Each generated plan is simulated in order to be tested and evaluated. The most appropriate plan is kept. The problem is even more complex when considering spatial constraints. For example, when fighting a wildfire, dozers build a firebreak to stop fire propagation. They have to take into account not only the fire spread but also the terrain characteristics in order to move easily. We propose an agent-based geosimulation approach to assist such planners with planning under strong spatial constraints in a real large-scale space. Forest fire fighting is a typical problem involving planning within an uncertain real world under strong spatial constraints. We use this case to illustrate our approach (ENCASM). The approach consists in drawing a parallel between the Real Environment RE (i.e. a forest in fire) and the Simulated Environment SE (i.e. a virtual reproduction of the forest). Spatial data within the SE should absolutely come from a GIS (Geographic Information System) for more realism. Real planners such as firefighters or dozers are simulated using software agents which reason about the space of the SE. To achieve a sufficient spatial awareness (taking into account all terrain’s features), agents have advanced capabilities such as perception. Using a multiagent geosimulation approach, we can generate a realistic simulation of the plan so that human decision makers can visualize the probable consequences of its execution. They can thus evaluate the plan and adjust it before it can effectively be executed. When the plan is in progress and in order to maintain coherence between RE and SE, we keep track in the SE of the real planners’ positions in the RE (using georeferencing technologies). We periodically replan the rest of the plan starting from the current position of the real planner. This is done in order to anticipate any problem which could occur due to the dynamism of the RE. We thus enhance the process of the classical Distributed Continual Planning DCP. Finally, the agents must replan as soon as an unexpected event is reported by planners within the RE. Since plans in the studied case (forest fires) are mainly paths, we propose a new approach based on agent geosimulation to solve particular Pathfinding problems. Besides, our approach highlights the benefits of the agent-based geo-simulation to the collaboration of both humans and agents. It thus shows: • How spatial cognitions of both spatially aware agents and human planners can be complementary. • How agent-based geo-simulation can complement human planning skills when addressing complex problems. Finally, when applying our approach on firefighting, we use MAGS as a simulation platform and Prometheus as a fire simulator. The main contributions of this thesis are: 1. An original architecture (ENCASMA) for the design and the implementation of applications (typically, natural disasters applications) in real, dynamic and large-scale geographic spaces. 2. An agent-based approach for particular Pathfinding problems (within real and spatially constrained environments and under qualitative constraints). 3. An enhancement of the DCP (particularly, the continual process) approach in order to overcome some limits of the classical DCP. 4. A practical solution for a real and complex problem: wildfires fighting. This new solution aims to assist experts when planning firefighting actions and monitoring the execution of these plans.
|
239 |
Conception et mise en œuvre de multichronia, un cadre conceptuel de simulation visuelle interactiveRioux, François 16 April 2018 (has links)
Cette thèse présente Multichronia, un cadre conceptuel de simulation interactive fournissant une représentation visuelle du cheminement d'un utilisateur dans l'exploration des simulations d'un système complexe. En complément aux méthodes formelles d'analyse, Multichronia vise à aider ses utilisateurs à comprendre un système sous étude en fournissant quatre boucles interactives. La boucle d'exploration de l'espace des paramètres permet à un utilisateur de modifier des paramètres de simulation afin de tester des hypothèses. La boucle d'exploration de l'espace des simulations lui permet de manipuler les données correspondant à des instances de simulation. Notamment, elle rend disponible des opérations de sélection et d'alignement via une interface graphique. La boucle d'exploration de l'espace des données lui permet de transformer les flots de données. Finalement, la boucle d'exploration de l'espace visuel lui permet d'afficher des données et de manipuler leur aspect visuel. Afin de représenter le cheminement d'un utilisateur dans son exploration de l'espace des paramètres, une interface graphique a été développée. Il s'agit de Varbre multichro-nique, une vue formelle donnant une représentation informative de l'état de l'analyse d'un problème ainsi que la possibilité d'exécuter une foule d'opérations interactives. D'autre part, le cadre conceptuel Multichronia forme un pipeline de données générique allant d'un simulateur jusqu'à un logiciel d'analyse. Un modèle conceptuel peut être extrait de ce pipeline de même que le flux de données correspondant. Dans cette thèse, il a été spécialisé avec la technologie XML. Cette dernière permet entre autres de définir une méthodologie de conception du modèle de données associé à un simulateur. La mise en oeuvre de Multichronia a permis de vérifier la validité des concepts proposés. L'architecture logicielle adoptée est un cadre d'application, de sorte que de nouveaux simulateurs puissent être facilement exploités. Deux applications concrètes ont été implantées, soit la simulation tactique et stratégique de l'attaque de convois militaires. Des modifications mineures aux simulateurs ont été nécessaires afin qu'ils rencontrent certains critères établis dans cette thèse. Somme toute, ces applications ont montré que Multichronia peut être déployé pour des applications quelconques.
|
240 |
Simulation numérique d'agrégats fractals en milieu de microgravitéDoyon, Julien 18 April 2018 (has links)
Depuis quelques décennies, l'étude de l'agrégation fractale dans divers environnements est de plus en plus importante en raison de son omniprésence dans plusieurs domaines scientifiques. L'intérêt est d'ailleurs marqué dans les sciences de la microgravité où les agrégats montrent des propriétés physiques très intéressantes. C'est dans cette optique que ce mémoire s'attarde aux simulations informatiques reliées à l'agrégation de particules en microgravité. Tout d'abord, la théorie entourant les fractales ainsi que les simulations numériques concernant l'agrégation a été abordée. La description des algorithmes numériques développés pour le projet est faite et les résultats recueillis à partir de ceux-ci sont exposés. Une rigoureuse analyse est ensuite présentée à partir des agrégats simulés. Dans cette étude, différents modèles numériques d'agrégation de particules, favorisant une vitesse de simulation relativement élevée, sont décrits. De plus, les différents facteurs influençant l'agrégation de particules y sont analysés. Des explications aux phénomènes physiques sont suggérées et des commentaires sont faits au sujet des algorithmes numériques afin d'optimiser la simulation d'agrégats dans des travaux futurs.
|
Page generated in 0.0739 seconds