• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 122
  • 78
  • 32
  • 16
  • 15
  • 14
  • 8
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 612
  • 362
  • 217
  • 188
  • 118
  • 109
  • 99
  • 98
  • 93
  • 88
  • 85
  • 82
  • 79
  • 79
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Prekybos centras "PRISMA" Pakruojyje / Shopping center "PRISMA" in Pakruojis

Kulnytė, Almina 29 August 2012 (has links)
Šiame bakalauro baigiamajame darbe suprojektuotas prekybos centras "PRISMA", kurį numatyta statyti Pakruojo mieste esančiame sklype.Pirmoje dalyje aprašoma pastato sklypo planas, pastato charakteristika, jo konstrukciniai sprendimai, bei inţineriniai tinklai. Taip pat pateikti atitvarų šilumos perdavimo koeficiento skaičiavimai. Konstrukcinėje dalyje suprojektuota surenkama gelţbetoninės perdangos plokštė, metalinės sijos 12 m ir 6m ir viena pasirinkta gelţbetoninės kolona. Technologinėje dalyje pateikiama gelţbetoninių kolonų montavimo technologinė kortelė. Aprašomas mechanizmų parinkimas. Kolonų montavimo kokybės kontrolės reikalavimai, taip pat pagrindiniai saugumo technikos reikalavimai. Brėţiniuose pateikti darbų ir darbininkų pareikalavimo grafikai. Ekonominėje dalyje pateikti darbų kiekių ţiniaraščiai ir pagal juos parengta Pastato lokalinė sąmata su mechanizmų ir medţiagų ţiniaraščiais. / In this final bachelor work there is the designed shopping centre "PRISMA", which is foreseen to be constructed in the free plot of Pakruojis.First part consists of brief description of the plan of the plot, building characteristics, its construction solutions and engineering networks. In addition, there are calculationsof coefficients of heat-transferring walls. In the constructions part, there is a designed collectable reinforced floor slab, 12 m and 6 m metallic beams and one chosen reinforced column. In the technological part, there is given a card of reinforced columns estimations. Selection of mechanisms is also descripted. What is more, it consists of requirements of column construction’s quality control and main technical safety. Throughout the drawings there are demand graphs of works and workers. Economical part consists of sheets with quantity of works, and accordingly prepared local estimate of building with sheets of mechanisms and materials.
112

Engineered Fibre-reinforced Concrete Systems for Bridge Deck Link Slab Applications

Cameron, James January 2014 (has links)
Rehabilitation and maintenance of the aging transportation infrastructure are of major concern in the Province of Ontario. A large portion of this work is related to the durability of highway bridges around the province. One of the weakest points in a bridge structure from a durability aspect is the expansion joints that can allow harmful elements, such as road salts and contaminants to leak down from the road surface and attack the supporting structure of the bridge. Although expansion joints can be eliminated in the design of a new bridge, such as in an integral abutment bridge, this requires major changes to the supports and structure of the bridge, making it impractical for retrofitting existing bridges. One effective alternative is the replacement of a traditional expansion joint with a link slab. A link slab is a concrete slab used in place of an expansion joint to make the bridge deck continuous while keeping the supporting girders simply supported [1]. Link slabs must be able to resist large force effects both in bending and direct tension while minimizing cracking [2], one solution is to use the high tensile and flexural strength properties of an ultra-high performance fibre-reinforced concrete (UHPFRC) [3]. The UHPFRC mixtures are often proprietary and expensive. The purpose of this research was to evaluate the potential of using common fibre types with standard concrete ingredients in a fibre-reinforced concrete (FRC) as an alternative to UHPFRC in a link slab. Using a selection of macro fibres commonly used in slab on grade applications for crack control, an optimized FRC mixture was developed following the principals established by Rossi and Harrouche [4]. This mixture was then used with a variety of fibre types to evaluate the structural and durability properties of the FRC. Testing was conducted for fresh mixture properties, compressive, tensile and flexural strength as well as freezing and thawing resistance, linear shrinkage, environmental and salt exposure along with other durability tests. Results showed that the concrete mixture used for an FRC link slab should consist of; an equal ratio of fine and coarse aggregate by weight and a higher than normal percentage of cement paste, for optimal workability and a dosage of 1.5% by volume of macro steel fibres. Hooked-end steel fibres resulted in the best performance increase to the FRC of the six fibre types tested. Results also showed that reinforcing cage for an FRC link slab should be designed to ensure that fibres can evenly reach all areas of the link slab form to give homogeneous fibre distribution. Although the FRCs created did not perform to the high level of a UHPFRC, these results show a consistent and effective FRC can be created, for use in a link slab with common fibres and standard concrete materials to provide a less expensive and more widely available FRC link slab than UHPFRC.
113

Determining and Validating the Three-dimensional Load Path Induced by Arching Action in Bridge Deck Slabs

Botticchio, Robert Michael 24 June 2014 (has links)
In this thesis, a load path caused by arching action in reinforced concrete slabs is described and validated using a three-dimensional model. Currently, the CHBDC enforces a 4 meter girder spacing requirement in the design of deck slabs. The aim of this thesis is to investigate the load path induced by arching action in deck slabs with a wide range of girder spacing. To do this, a two-dimensional model was developed to examine the path of horizontal stress and was validated using a FEM. A parametric study showed that girder spacing does not affect the development of restraining stress while cantilever width does. As well, cracking of the slab is necessary for arching action to occur. These results help with future development of a rational model to be used by bridge designers.
114

Semi-Quantitative Assessment Framework for Corrosion Damaged Slab-on-Girder Bridge Columns Using Simplified Nonlinear Finite Element Analysis

Mohammed, Amina 06 May 2014 (has links)
Most of existing North American bridge infrastructure is reported to be deficient. Present infrastructure management mainly relies on qualitative evaluation, where bridge safety and serviceability are judged through routine visual inspection. With the successive increase in the number of severely deficient bridges and the limited available resources, it is crucial to develop a performance-based quantitative assessment evaluation approach that enables an accurate estimation of aging bridges ultimate and seismic capacities and ensures their serviceability. Reinforcement corrosion is the main cause of most of North American concrete infrastructure deterioration. Experimental investigations prove that reinforcement corrosion results in reduction of the steel reinforcement cross sectional area, localized (or global in very extreme cases) loss of bond action, concrete spalling, loss of core concrete confinement, and structural collapse. Field observations show that damage due to reinforcement corrosion in reinforced concrete (RC) bridge columns is localized in highly affected zones by splash of deicing water. In this thesis, an innovative performance-based semi-quantitative assessment framework is developed using newly developed simplified nonlinear static and dynamic finite element analysis approaches. The framework integrates the bridge’s available design and after-construction information with enhanced inspection and additional material testing as sources for accurate input data. In order to evaluate the structural performance and the capacity of the corrosion-damaged bridge columns, four nonlinear static and dynamic analysis approaches have been developed: (i) simplified nonlinear sectional analysis (NLSA) approach that presents the basis of the analysis approaches to estimate the ultimate and seismic capacities, and serviceability of bridge columns; (ii) simplified nonlinear finite element analysis (NLFEA) approach, which enables estimating the ultimate structural capacity of corrosion-damaged RC columns; (iii) simplified hybrid linear/nonlinear dynamic finite element analysis (SHDFEA) approach to evaluate the serviceability of the bridge; and, (iv) simplified non-linear seismic analysis (SNLSA) approach to evaluate the seismic capacity of the bridge columns. The four analysis approaches are verified by comprehensive comparisons with available test experimental and analytical results. The proposed semi-quantitative assessment framework suggests three thresholds for each performance measure of the evaluation limit states to be decided by the bridge management system team. Case studies are presented to show the integrity and the consistency of using the proposed assessment framework. The proposed assessment framework together with the analysis approaches provide bridge owners, practicing engineers, and management teams with simplified and accurate evaluation tools, which lead to reduce the maintenance/rehabilitation cost and provide better safety, and reduce the variation in the data collected using only traditional inspection methods.
115

Control of Time-dependent Transverse Cracking in Reinforced Concrete Bridge Decks

Chen, Cathy Hsiang-Chen 18 March 2013 (has links)
Transverse cracking in bridge decks has been found to be a rising problem for slab-on-girder bridges. In response to the concern, this research examined the influence of structural parameters and developed an analytical truss model, based on finite element modelling responses, for predicting the condition of long term cracking. Crack widths predicted using the truss model are very similar to that measured in a recent survey of Ontario highway overpass bridges. The approach to control cracking in deck slabs through structural design decisions enables engineers to provide high cracking resistance at locations of the bridge deck that are most likely to crack. Recommendations were made, based on the findings obtained from two sets of parametric studies, to help ensure transverse cracking in bridge decks is properly controlled for typical slab-on-girder bridges designed using the empirical design method specified in the current Canadian Highway Bridge Design Code.
116

Control of Time-dependent Transverse Cracking in Reinforced Concrete Bridge Decks

Chen, Cathy Hsiang-Chen 18 March 2013 (has links)
Transverse cracking in bridge decks has been found to be a rising problem for slab-on-girder bridges. In response to the concern, this research examined the influence of structural parameters and developed an analytical truss model, based on finite element modelling responses, for predicting the condition of long term cracking. Crack widths predicted using the truss model are very similar to that measured in a recent survey of Ontario highway overpass bridges. The approach to control cracking in deck slabs through structural design decisions enables engineers to provide high cracking resistance at locations of the bridge deck that are most likely to crack. Recommendations were made, based on the findings obtained from two sets of parametric studies, to help ensure transverse cracking in bridge decks is properly controlled for typical slab-on-girder bridges designed using the empirical design method specified in the current Canadian Highway Bridge Design Code.
117

Analysis And Design Of Passive Microwave And Optical Devices Using The Multimode Interference Technique.

Sunay, Ahmet Sertac 01 July 2005 (has links) (PDF)
The Multimode Interference (MMI) mechanism is a powerful toool used in the analysis and design of a certain class of optical, microwave and millimeter wave devices. The principles of the MMI method and the self-imaging principle is described. Using this method, NXM MMI couplers, MMI splitter/combiners are analyzed. Computer simulations for illustrating the &quot / Multimode Interference Mechanism&quot / are carried out. The MMI approach is used to analyze overmoded &#039 / rectangular metallic&#039 / and &#039 / dielectric slab&#039 / type of waveguides and devices. The application of the MMI technique is investigated experimentally by using a metallic waveguide structure operating in the X-band. The construction of the related structure and the related experimental work are reported.
118

Evaluation of performance and maximum length of continuous decks in simple-span bridges

Snedeker, Katherine O. 08 April 2009 (has links)
The purpose of this research was to evaluate the performance history of continuous bridge decks in the State of Georgia, to determine why the current design detail works, to recommend a new design detail if necessary, and to recommend the maximum and/or optimum lengths of continuous bridge decks. The continuous bridge decks have continuous reinforcement over the junction of two edge beams with a construction joint for crack control. The current technical literature and current practices and design procedures were synthesized and summarized. GDOT maintenance reports were reviewed, and field evaluations were conducted to determine the performance of the continuous deck detail. The effects of bridge movement due to thermal strains, shrinkage, and live loads were considered in the analytical studies to better understand the demands placed on the GDOT continuous deck detail. A summary of the design and length recommendations was provided upon completion of the research.
119

The boundary of the subducting slab and mantle wedge of an incipient arc: P-T-D history, mixing, and fluid-related processes recorded in the Dalrymple Amphibolite, Palawan Ophiolite (the Philippines) / 初期島弧の沈み込むスラブーマントルウェッジ境界:フィリピン・パラワンオフィオライト中のダーリンプル角閃岩に記録された温度・圧力・変形履歴、岩石混合および流体の関与プロセスについて

VALERA, Gabriel Theophilus Vinalay 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23713号 / 理博第4803号 / 新制||理||1687(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 河上 哲生, 教授 田上 高広, 教授 下林 典正 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
120

The fire performance of restrained polymer-fibre-reinforced concrete composite slabs

Fox, David Christopher Alexander January 2013 (has links)
Composite slab flooring systems for steel-framed buildings consist of a profiled steel deck and a cast in-situ slab. The slab traditionally includes a layer of light gauge steel mesh reinforcement. This mesh is placed near the surface, which controls the early-age cracking caused by concrete drying and shrinkage. The steel mesh also performs a vital structural role at high temperatures. Structural fire tests and numerical investigations over the last 15 years have established that the mesh can provide enhanced fire resistance. A load-carrying mechanism occurs in fire with the mesh acting as a tensile catenary, spanning between perimeter supports. This structural mechanism is currently utilised regularly in the performance-based fire engineering design of steel-framed buildings. In a recent development, this mesh can be removed by using concrete with dispersed polymer fibre reinforcement to form the composite slab. The polymer-fibre-reinforced concrete (PFRC) is poured onto the deck as normal, and the fibres resist early crack development. For developers this technique has several advantages over traditional reinforcing mesh, such as lower steel costs, easier site operations and faster construction. However, to date the fire resistance of such slabs has been demonstrated only to a limited extent. Single element furnace tests with permissible deflection criteria have formed the basis for the fire design of such slabs. But these have not captured the full fire response of a structurally restrained fibre-reinforced slab in a continuous frame. The polymer fibres dispersed throughout the slab have a melting point of 160ºC, and it is unclear how they contribute to overall fire resistance. In particular, there has been no explanation of how such slabs interact with the structural perimeter to maintain robustness at high deflections. This project was designed to investigate the structural fire behaviour of restrained polymer-fibre-reinforced composite slabs. An experimental series of six slab experiments was designed to investigate the effects of fibre reinforcement and boundary restraint. A testing rig capable of recording the actions generated by the heat-affected slab was developed and constructed. Model-scale slab specimens were tested with different reinforcement and perimeter support conditions, to establish the contributions to fire resistance of the polymer fibres and applied structural restraint.

Page generated in 0.0599 seconds