• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computer Vision for Volume Estimation and Material Classification

Lagelius, Oliver, Wässman, Ludwig January 2023 (has links)
Vehicular automation is a rapidly advancing field within robotics. These autonomous machines have the potential to perform burdensome and dangerous tasks that historically have been executed by humans which has been a long-time goal for the industry. This thesis aims to develop a computer vision system to enable volume estimation and material classification of the material inside the bucket of an autonomous wheel loader. This information is crucial for autonomous wheel loaders to make decisions. The system is intended to be self-calibrating to ensure future adaptability to different bucket sizes. A Convolutional Neural Network (CNN) based edge detecting network referred to as Dense Extreme Inception Network for Edge Detection (DexiNed) is proposed to both remove redundant information and enhance desired information. By combining the depth perception from a stereo camera and the information extracted from the DexiNed a proposed solution to estimate the volume is presented. A Simple Linear Iterative Clustering (SLIC) approach is applied to extract the material to enable classification of the material. The estimated volume is compared to an annotated true baseline for validation of the system. The thesis presents the precision of the volume estimation and showcases the result of material extraction using three different segment sizes with the SLIC. Additionally, the thesis presents issues concerning material classification.
2

General Object Detection Using Superpixel Preprocessing

Wälivaara, Marcus January 2017 (has links)
The objective of this master’s thesis work is to evaluate the potential benefit of a superpixel preprocessing step for general object detection in a traffic environment. The various effects of different superpixel parameters on object detection performance, as well as the benefit of including depth information when generating the superpixels are investigated. In this work, three superpixel algorithms are implemented and compared, including a proposal for an improved version of the popular Spectral Linear Iterative Clustering superpixel algorithm (SLIC). The proposed improved algorithm utilises a coarse-to-fine approach which outperforms the original SLIC for high-resolution images. An object detection algorithm is also implemented and evaluated. The algorithm makes use of depth information obtained by a stereo camera to extract superpixels corresponding to foreground objects in the image. Hierarchical clustering is then applied, with the segments formed by the clustered superpixels indicating potential objects in the input image. The object detection algorithm managed to detect on average 58% of the objects present in the chosen dataset. It performed especially well for detecting pedestrians or other objects close to the car. Altering the density distribution of the superpixels in the image yielded an increase in detection rate, and could be achieved both with or without utilising depth information. It was also shown that the use of superpixels greatly reduces the amount of computations needed for the algorithm, indicating that a real-time implementation is feasible.
3

Spatially Adaptive Analysis and Segmentation of Polarimetric SAR Data

Wang, Wei January 2017 (has links)
In recent years, Polarimetric Synthetic Aperture Radar (PolSAR) has been one of the most important instruments for earth observation, and is increasingly used in various remote sensing applications. Statistical modelling and scattering analysis are two main ways for PolSAR data interpretation, and have been intensively investigated in the past two decades. Moreover, spatial analysis was applied in the analysis of PolSAR data and found to be beneficial to achieve more accurate interpretation results. This thesis focuses on extracting typical spatial information, i.e., edges and regions by exploring the statistical characteristics of PolSAR data. The existing spatial analysing methods are mainly based on the complex Wishart distribution, which well characterizes the inherent statistical features in homogeneous areas. However, the non-Gaussian models can give better representation of the PolSAR statistics, and therefore have the potential to improve the performance of spatial analysis, especially in heterogeneous areas. In addition, the traditional fixed-shape windows cannot accurately estimate the distribution parameter in some complicated areas, leading to the loss of the refined spatial details. Furthermore, many of the existing methods are not spatially adaptive so that the obtained results are promising in some areas whereas unsatisfactory in other areas. Therefore, this thesis is dedicated to extracting spatial information by applying the non-Gaussian statistical models and spatially adaptive strategies. The specific objectives of the thesis include: (1) to develop reliable edge detection method, (2) to develop spatially adaptive superpixel generation method, and (3) to investigate a new framework of region-based segmentation. Automatic edge detection plays a fundamental role in spatial analysis, whereas the performance of classical PolSAR edge detection methods is limited by the fixed-shape windows. Paper 1 investigates an enhanced edge detection method using the proposed directional span-driven adaptive (DSDA) window. The DSDA window has variable sizes and flexible shapes, and can overcome the limitation of fixed-shape windows by adaptively selecting homogeneous samples. The spherically invariant random vector (SIRV) product model is adopted to characterize the PolSAR data, and a span ratio is combined with the SIRV distance to highlight the dissimilarity measure. The experimental results demonstrated that the proposed method can detect not only the obvious edges, but also the tiny and inconspicuous edges in heterogeneous areas. Edge detection and region segmentation are two important aspects of spatial analysis. As to the region segmentation, paper 2 presents an adaptive PolSAR superpixel generation method based on the simple linear iterative clustering (SLIC) framework. In the k-means clustering procedure, multiple cues including polarimetric, spatial, and texture information are considered to measure the distance. Since the constant weighting factor which balances the spectral similarity and spatial proximity may cause over- or under-superpixel segmentation in different areas, the proposed method sets the factor adaptively based on the homogeneity analysis. Then, in heterogeneous areas, the spectral similarity is more significant than the spatial constraint, generating superpixels which better preserved local details and refined structures. Paper 3 investigates another PolSAR superpixel generation method, which is achieved from the global optimization aspect, using the entropy rate method. The distance between neighbouring pixels is calculated based on their corresponding DSDA regions. In addition, the SIRV distance and the Wishart distance are combined together. Therefore, the proposed method makes good use of the entropy rate framework, and also incorporates the merits of the SIRV distance and the Wishart distance. The superpixels are generated in a homogeneity-adaptive manner, resulting in smooth representation of the land covers in homogeneous areas, and well preserved details in heterogeneous areas. / <p>QC 20171123</p>

Page generated in 0.0314 seconds