• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 2
  • 1
  • Tagged with
  • 19
  • 17
  • 17
  • 17
  • 8
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling of Shape Memory Alloys Considering Rate-independent and Rate-dependent Irrecoverable Strains

Hartl, Darren J. 2009 December 1900 (has links)
This dissertation addresses new developments in the constitutive modeling and structural analysis pertaining to rate-independent and rate-dependent irrecoverable inelasticity in Shape Memory Alloys (SMAs). A new model for fully recoverable SMA response is derived that accounts for material behaviors not previously addressed. Rate-independent and rate-dependent irrecoverable deformations (plasticity and viscoplasticity) are then considered. The three phenomenological models are based on continuum thermodynamics where the free energy potentials, evolution equations, and hardening functions are properly chosen. The simultaneous transformation-plastic model considers rate-independent irrecoverable strain generation and uses isotropic and kinematic plastic hardening to capture the interactions between irrecoverable plastic strain and recoverable transformation strain. The combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The simultaneous transformation-viscoplastic model considers rate-dependent irrecoverable strain generation where the theoretical framework is modfii ed such that the evolution of the viscoplastic strain components are given explicitly. The numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. Experimentally validated analysis results are provided for the fully recoverable model, the simultaneous transformation-plastic yield model, and the transformation-viscoplastic creep model.
12

Atenuação de vibrações em sistemas que utilizam molas de liga de memória de forma /

Silva, Rafael de Oliveira January 2017 (has links)
Orientador: Gustavo Luiz Chagas Manhães de Abreu / Resumo: Diversos estudos relacionados à atenuação de vibrações utilizando materiais inteligentes vem sendo amplamente explorados no meio acadêmico. Neste âmbito, as Ligas de Memória de Forma (LMF) se destacam por apresentarem dissipação de energia vibratória devido ao seu comportamento histerético promovido pelo efeito pseudoelástico. No presente trabalho, dois sistemas com um e dois graus de liberdade, contendo mola helicoidal de LMF como elemento resiliente, são implementados numericamente para demonstrar a atenuação de vibrações ocasionada pelas transformações de fase presentes no material. Para cada um dos sistemas mecânicos investigados, dois modelos termomecânicos são confrontados numericamente visando a obtenção das características de cada modelo em representar a atenuação de vibrações dos sistemas submetidos à carregamentos termo-mecânicos. O trabalho termina comentando as potencialidades da proposta apresentada, discutindo as facilidades e dificuldades encontradas na sua implementação e apontando para o desenvolvimento de futuros estudos. / Mestre
13

Atenuação de vibrações em sistemas que utilizam molas de liga de memória de forma / Vibration attenuation in systems that use shape memory alloys

Silva, Rafael de Oliveira [UNESP] 31 March 2017 (has links)
Submitted by RAFAEL DE OLIVEIRA SILVA null (rafa_engemec@hotmail.com) on 2017-04-24T14:27:25Z No. of bitstreams: 1 dissertacao_final.pdf: 3521819 bytes, checksum: b08a60dcaa91691a2bf36a0cc59992e6 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-04-26T13:27:52Z (GMT) No. of bitstreams: 1 silva_ro_me_ilha.pdf: 3521819 bytes, checksum: b08a60dcaa91691a2bf36a0cc59992e6 (MD5) / Made available in DSpace on 2017-04-26T13:27:52Z (GMT). No. of bitstreams: 1 silva_ro_me_ilha.pdf: 3521819 bytes, checksum: b08a60dcaa91691a2bf36a0cc59992e6 (MD5) Previous issue date: 2017-03-31 / Diversos estudos relacionados à atenuação de vibrações utilizando materiais inteligentes vem sendo amplamente explorados no meio acadêmico. Neste âmbito, as Ligas de Memória de Forma (LMF) se destacam por apresentarem dissipação de energia vibratória devido ao seu comportamento histerético promovido pelo efeito pseudoelástico. No presente trabalho, dois sistemas com um e dois graus de liberdade, contendo mola helicoidal de LMF como elemento resiliente, são implementados numericamente para demonstrar a atenuação de vibrações ocasionada pelas transformações de fase presentes no material. Para cada um dos sistemas mecânicos investigados, dois modelos termomecânicos são confrontados numericamente visando a obtenção das características de cada modelo em representar a atenuação de vibrações dos sistemas submetidos à carregamentos termo-mecânicos. O trabalho termina comentando as potencialidades da proposta apresentada, discutindo as facilidades e dificuldades encontradas na sua implementação e apontando para o desenvolvimento de futuros estudos. / Several studies regarding the vibration attenuation using intelligent materials have been widely explored in the academic world in engineering. In this context, the shape memory alloys (SMAs) exhibit vibratory energy dissipation due to their hysteretic behavior caused by the pseudoelastic effect. In the present work, two systems with one and two degrees of freedom, containing a SMA helical spring as a resilient element, are numerically implemented to demonstrate the vibration attenuation of the system caused by the phase transformations present in the SMA spring. For each considered mechanical systems, two thermomechanical models are numerically confronted in order to obtain the characteristics of each model in representing the vibration attenuation of the systems submitted to thermo-mechanical loads. This work is concluded presenting the potentialities of the design methodology proposed and future developments to be implemented.
14

Enhancing the predictive power of molecular dynamics simulations to further the Materials Genome Initiative

Saaketh Desai (9760520) 14 December 2020 (has links)
<div>Accelerating the development of novel materials is one of the central goals of the Materials Genome Initiative and improving the predictive power of computational</div><div>material science methods is critical to attain this goal. Molecular dynamics (MD) is one such computational technique that has been used to study a wide range of materials since its invention in the 1950s. In this work we explore some examples of using and increasing the predictive power of MD simulations to understand materials phenomena and provide guidelines to design tailored materials. We first demonstrate the use of MD simulations as a tool to explore the design space of shape memory alloys, using simple interatomic models to identify characteristics of an integrated coherent second phase that will modify the transformation characteristics of the base shape memory alloy to our desire. Our approach provides guidelines to identify potential coherent phases that will achieve tailored transformation temperatures and hysteresis. </div><div><br></div><div>We subsequently explore ideas to enhance the length and time scales accessible via MD simulations. We first discuss the use of kinetic Monte Carlo methods in MD simulations to predict the microstructure evolution of carbon fibers. We ?find our approach to accurately predict the transverse microstructures of carbon fibers, additionally predicting the transverse modulus of these fibers, a quantity difficult to measure via experiments. Another avenue to increase length and time scales accessible via MD simulations is to explore novel implementations of algorithms involved in machine-learned interatomic models to extract performance portability. Our approach here results in significant speedups and an efficient utilization of increasingly common CPU-GPU hybrid architectures.</div><div><br></div><div>We finally explore the use of machine learning methods in molecular dynamics, specifically developing machine learning methods to discover interpretable laws directly from data. As examples, we demonstrate the discovery of integration schemes for MD simulations, and the discovery of melting laws for perovskites and single elements. Overall, this work attempts to illustrate how improving the predictive capabilities of molecular dynamics simulations and incorporating machine learning ideas can help us design novel materials, in line with the goals of the Materials Genome Initiative.</div>
15

The Effect of Nanoscale Precipitates on the Templating of Martensite Twin Microstructure in NiTiHf High Temperature Shape Memory Alloys

Esham, Kathryn V. 18 October 2017 (has links)
No description available.
16

Composition Analysis Of NiTi Thin Films Sputtered From A Mosaic Target : Synthesis And Simulation

Vincent, Abhilash 11 1900 (has links) (PDF)
No description available.
17

INTEGRATION OF CONTROL SYSTEMS INTO INTERLOCKING MATERIALS

Ethan West Guenther (13163403) 28 July 2022 (has links)
<p>  </p> <p>Architectured materials offer engineers more options for choosing materials with their desired properties. Segmenting materials to create topological interlocking materials (TIMs) creates materials, which can deform in greater amounts without failure and absorb more strain energy. Previous research on TIMs has shown that the stiffness and reaction force of these materials can be directly controlled by controlling the boundary forces offered by the frame which constrains these materials.</p> <p>The research presented in this paper investigated a TIM made into a 1-Dimension beam like structure called a lintel. This research investigated not only the mechanics of this structure, but also developed a method of directly controlling the reaction force at a given displacement using shape memory alloy (SMA) wires. These wires would actuate the boundary pieces used to constrain the system. These actuation wires coupled with force sensors imbedded into the lintel allowed a feedback control loop to be established, which would control the reaction force. The reaction force was then controlled to create a smart structure which could optimize the strain energy absorption under the constraint of a maximum allowable load, similar to cellular solids used in packaging and padding materials.</p> <p>To develop this smart structure, four separate investigations occurred. The first was finite element analysis (FEA) performed to model the loading response of the lintel. This experiment demonstrated that the Mises Truss Model was effective at modelling the lintel. The second was an experimental validation of the FEA model performed in the first investigation. This experiment validated the Mises Truss Model for the lintel. The third investigation simulated the active lintel using computational software and the model of the lintel established in the first two investigations. This experiment demonstrated computationally the ability of SMA wires to control the reaction force as desired in an idealized case. The fourth and final investigation experimentally validated the ability to create and active lintel and created a functioning prototype. This demonstrated experimentally the ability of the active lintel to control reaction force as desired.</p> <p>This project has demonstrated the viability to create smart structures using segmented materials, which in the future may be used in a variety of applications including robotics and adaptive structures in harsh environments. </p>
18

Studies On Nickel-Titanium Shape Memory Alloy Thin Films For Micro-actuator Applications

Sharma, Sudhir Kumar 12 1900 (has links) (PDF)
Shape memory alloys (SMAs) have been recognized as one of the most promising materials for MEMS micro-actuator applications. Among the available materials, Nickel/Titanium (NiTi) SMAs are more popular because, they exhibit unique properties in shape memory effect (SME) and pseudo-elasticity (PE). In addition NiTi SMA possesses high corrosion resistance, excellent mechanical properties and is also bio¬compatible. NiTi thin-film SMAs have been considered as the most significant material in the field of MEMS applications, which can be patterned with standard lithographic techniques to scale-up for batch production. However, the lack of proper understanding of basic materials’ properties and inability to reproduce, has limited the usage of this material in MEMS devices. The properties of NiTi SMA thin-films are very much sensitive to the elemental composition and structure, which are in turn decided by the deposition process and process parameters. A brief history of NiTi shape memory alloys (SMAs), basic information, transformation characteristics, crystal structure, phase diagram and literature reviewed for the current motivation have been presented in the second chapter In the third chapter, a brief summary about the deposition techniques relevant to NiTi film deposition has been presented. The deposition of NiTi films by a number of deposition techniques such as thermal evaporation, co-evaporation, molecular beam Epitaxy, pulsed laser deposition, flash evaporation, electron beam deposition, filtered arc deposition, ion beam assisted sputter deposition, vacuum plasma spraying, ion beam sputtering, ECR sputtering and magnetron sputtering techniques have been discussed. In order to achieve a precise control over film thickness and composition of the films on to the substrates, the selection of magnetron sputtering has been highlighted. In the present thesis, two prolonged approaches such as DC magnetron sputtering of an alloy target and co-sputtering of elemental targets have been presented. Various characterization techniques used for film thickness, composition, structure, micro¬structure, electrical, phase transformation and mechanical properties have also been briefly presented in the same chapter. In the fourth chapter, description of Conventional Alloy Target Sputtering System has been presented. DC magnetron sputtering of an alloy target with two different atomic ratios (Ni:Ti = 45:55 & 50:50) has been used for depositing the coatings. Several limitations in the reproducibility and repeatability have been observed with single alloy target sputtering, irrespective of the target composition ratio. In addition to this, incorporation of oxygen in the films during and after deposition has been observed, which has limited the extensive usage of this single alloy target system. The limitations regarding control over composition, thickness uniformity over large area have been improved by designing and fabricating a dedicated Three Target Magnetron Co-sputtering System. The vacuum diagnosis of the system under different conditions has been carried out by using PPR-200 Residual Gas Analyzer (RGA), which have included in Appendix I. Similar to alloy target sputtering system, the thickness uniformity and required composition with deposition parameters over a size of 75 mm diameter has been achieved and the process repeatability has been established. Oxygen incorporation in the films during deposition has been minimized by pre-sputtering of Ti target for known duration of time, which has resulted in significant reduction in partial pressure of oxygen in the chamber. The oxide layer formation on film surface has been eliminated by in-situ capping layer (TiN) deposition. In the fifth chapter, the influence of process parameters such as sample locations, substrate to target distance (STD), working pressure (WP), gas flow rates, deposition rates, deposition and annealing temperature, Target power, on the film thickness and composition uniformity have been presented for alloy target sputtering system as well as for the co-sputtering system. The film thicknesses have been measured with stylus method. Film compositions have been determined by energy dispersive X-ray spectroscopy (EDS), Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS). The working pressure of 1.5 X 10-3 mbar, STD of 90 mm and target power of 100 W have been found to produce coatings having uniform thickness and composition over the given area for alloy target sputtering system. Similar investigations have been carried out for co-sputtered NiTiCu films. The working pressure of 1.5x 10-3 mbar, at a STD of 90 mm, at a rotational speed of 15 rpm and at target powers of 600, 50 and 12 W for Ti, Ni and Cu respectively, have resulted in the thickness and required composition uniformity over a size of 75 mm diameter substrate and the process repeatability has been established. In the Sixth chapter, the influence of process parameters on film structure and micro-structure on the NiTi/NiTiCu films deposited by a single alloy target and co¬sputtering have been studied by different analytical techniques like XRD, TEM, AFM, SEM etc. Phase transformation temperatures and kind of transformations have been investigated by DSC, Resistivity / Temperature and Stress/ Temperature studies and correlations have been established. The process parameters have been optimized for TiN deposition, which act as the capping layer to protect NiTi films from surface oxidation. The variation in mechanical behavior for the NiTi/ NiTiCu films before and after TiN capping by nano-indentation test have also presented. XRD and TEM studies have shown that the NiTi / NiTiCu films deposited at room temperature to 400o C are amorphous. Post-annealing, at a temperature of 450O C or above resulted in the film crystallization with oxide layer formation at the film surface, which has been confirmed by XRD and XTEM studies. In the case of Ni-rich NiTi films, R-phase diffraction peaks have also been identified in addition to the Austenite / Martensite phase. XRD investigations have shown that Ti-rich NiTi and Ni-rich NiTi films have resulted in precipitate free films. In the case of Ti-rich NiTiCu and Ni-rich NiTiCu films, the variations in Ti/Ni target power has resulted in the formation of NiTi 2 and Ni3Ti precipitates along with their parent Martensite and Austenite phases. When the Cu content is increased in NiTiCu films, an increase in number of Martensite phase diffraction peaks in XRD spectrum has been observed. XTEM studies have confirmed formation of oxide layer, inter-metallic layer and interface layer at higher post annealing temperatures. SEM studies have shown that the films deposited at higher gas flow rate results in the columnar micro-structure. In the context of NiTiCu films, the films deposited at higher Ti target power have shown more compact and tightly packed film micro-structure. AFM studies have shown increase in the average crystallite size and film roughness with post annealing temperature and duration. TiN coating has been used as the capping layer onto NiTi / NiTiCu films. Structural and micro-structural comparison of these films before and after TiN coating has resulted the appearance of (111) TiN peak in all TiN capped films. SEM and AFM studies have shown that the film roughness have decreased after capping layer deposition. DSC thermal cycling used to verify the film crystallization temperature has shown the appearance of exothermic peak in NiTi / NiTiCu films. DSC, Resistivity-temperature, stress-temperature response has been confirmed the transformation temperature and kind of transformations in all the films. Residual stress measurements have shown that the crystalline films exhibited lower bi-axial stress in comparison to the amorphous films. Ti-rich NiTi films have shown single phase transformations (M-A and A-M) whereas two phase transformations (M-R-A and A-R-M) have been observed in Ni-rich NiTi films. Higher deposition / annealing temperature have shown the appearance of distinct phase transformation peaks in resistivity vs. temperature studies. In the case of NiTiCu films, the decrease in film crystallization temperature with increase in the Cu content has been observed. The phase transformation temperature evaluated from second thermal cycle has shown decrease in the width of hysteresis loop with increase in the Cu content in NTC films. Nano-indentation studies have been carried out to evaluate the micro-hardness and modulus values of TiN capped and uncapped NiTi / NiTiCu films. The modulus and hardness uniformity have been confirmed for the different location over a diameter of 75 mm. The modulus and hardness values have increased with increase in the substrate and annealing temperature. Increase in the Cu target power has resulted in the increase in the hardness and modulus values under same deposition conditions. TiN coated NiTi / NiTiCu films have shown larger modulus and hardness values than the uncapped films. In the Seventh chapter, the fabrication process and actuation response for silicon dioxide, Aluminum and NiTi SMA coated micro-cantilevers has been discussed. Various nano-structures such as pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been fabricated. High aspect ratio nano-pillars have been selected for micro-compression testing. In summary, this thesis emphasizes on the fabrication of specific sputtering systems relevant to NiTi film deposition and process parameter optimization for desired film thickness and composition uniformity. DC magnetron sputtering of a NiTi alloy target (50:50 and 45:55 at. %) and co-sputtering of elemental targets (Ni, Ti and Cu) have been presented. These films have been investigated for structural, micro-structural, phase transformation and mechanical properties. In-situ deposition of TiN capping layer, on to NiTi / NiTiCu films has been carried out to reduce the oxygen trapping. The fabrication process and actuation response of micro-cantilevers have been described. The etching characteristics to generate various nano-structures viz. pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been investigated and mechanical testing of selected nano-structures have also been reported.
19

Some Processing and Mechanical Behavior Related Issues in Ti-Ni Based Shape Memory Alloys

Shastry, Vyasa Vikasa January 2013 (has links) (PDF)
Shape memory alloys (SMAs) exhibit unique combination of structural and functional properties and hence have a variety of current and potential applications. The mechanical behaviour of SMAs, in particular the influence of processing on the microstructure, which in turn influences the performance of the alloy, mechanical properties at the nano-scale, and under cyclic loading conditions, are of great current interest. In this thesis, specific issues within each of these broad areas are examined with a view to suggest further optimize/characterize SMAs. They are the following: (a) For thermo-mechanical secondary processing of SMAs, can we identify the optimum combination of temperature- strain rate window that yields a desirable microstructure? (b) How can indentation be used to obtain information about functional properties of shape memory alloys so as to complement traditional methods? (c) How can the information obtained from indentation be utilized for the identification of the alloy composition that yields a high temperature SMA through the combinatorial diffusion couple approach? Towards achieving the first objective, we study the hot deformation behavior of a cast NiTi alloy with a view of controlling the final microstructure. The “processing maps” approach is used to identify the optimum combination of temperature and strain rate for the thermomechanical processing of a SMA system commonly used in actuators applications (NiTiCu). Uniaxial compressions experiments are conducted in the temperature range of 800- 1050 °C and at strain rate range of 10-3 and 102 s-1. 2-D power dissipation efficiency and instability maps are generated and various deformation mechanisms, which operate in different temperature–strain rate regimes, are identified with the aid of these maps. Complementary microstructural analysis of specimens (post deformation) is performed with the help of electron backscattered diffraction (EBSD) analysis to arrive at a processing route which produces stress free grains. A safe window suitable for industrial processing of this alloy which leads to grain refinement and strain-free grains (as calculated by various methods of misorientation analysis representation) is suggested. Regions of the instability (characterized by the same analysis) result in strained microstructure, which in turn can affect the performance of the SMA in a detrimental manner. Next, to extract useful information from indentation responses, microindentation experiments at a range of temperatures (as the shape memory transformation is in progress) are conducted underneath the Vickers indenter. SME was observed to cause a change in the calculated recovery ratios at temperatures above As. Spherical indentation of austenite and martensite show different characteristics in elastic and elasto- plastic regimes but are similar in the plastic regime. NanoECR experiments are also conducted under a spheroconical indenter at room temperature, where the resistance measured is observed to increase during the unloading of room temperature austenite SMA. This is a signature of the reverse transformation back to austenite during the withdrawal of the indenter. Lastly, recovery ratios are monitored in the case of a NiTiPd diffusion couple before and after heat treatment at different temperature intervals using non- contact optical profilometry. The recovery ratio approach is successfully used to determine the useful temperature and %Pd range for a potential NiTiPd high temperature SMA. The method makes high throughput identification of high temperature shape memory alloys possible due to promising alloy compositions being identified at an early stage.

Page generated in 0.043 seconds