• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 416
  • 85
  • 84
  • 43
  • 20
  • 16
  • 14
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 824
  • 357
  • 250
  • 156
  • 129
  • 108
  • 105
  • 87
  • 83
  • 74
  • 67
  • 64
  • 60
  • 58
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Adenovirus vector systems permitting regulated protein expression and their use for in vivo splicing studies

Molin, Magnus January 2001 (has links)
We have constructed two adenovirus-based gene expression vector systems permitting regulated protein expression. They are based on the tetracycline-regulated Tet-ON- and the progesterone antagonist RU 486-regulated gene expression systems, which were rescued into E1-deficient adenovirus vectors. The vectors function in a number of cell types representing a broad species-variety and the regulation of protein expression was shown to be tightly controlled in cells not permissive for virus replication. Furthermore, the adenovirus-Tet-ON system was shown to perform in mice after intramuscular administration. The novel adenovirus-vector systems were then used to study the effects of overexpression of selected proteins on adenovirus replication during a lytic infection, with focus on regulation of adenovirus alternative splicing. Expression of adenovirus transcription units is to a large extent temporally regulated at the level of alternative pre-mRNA splicing, where viral splice site usage shifts from proximal to distal splice site selection as infection proceeds. This makes adenovirus an appropriate model for mechanistic studies of regulated splicing. We show that overexpression of the essential host cell splicing factor ASF/SF2 inhibits this shift by promoting usage of proximal splice sites. As a consequence, the virus displayed a markedly inhibited growth. Interestingly, mRNA expression from the adenovirus major late promoter was almost completely lost as a consequence of ASF/SF2 overexpression. Collectively, the cellular splicing factor ASF/SF2 prevents adenovirus from entering the late phase of infection. This strongly argues for a need for the virus to block the splicing enhancer activity of ASF/SF2 for establishment of a lytic infection. Further, from analysis of the strict inhibition of late region 1 late pre-mRNA splicing we propose that the temporal regulation of alternative splicing is merely a consequence of fitness rather than profoundly deleterious effects of an unregulated expression. During our studies we noted that in 293 cells, which are used for growth of E1-deficient Ad vectors, an unwanted background reporter gene expression was evident in our vector systems. We therefore introduced an additional regulatory element, functioning as a transcriptional road-block, and showed that this methodological innovation represents a way to overcome the potentially deleterious effects of background reporter gene expression. This modified viral vector system should make it possible to reconstruct recombinant viruses expressing highly toxic proteins. In conclusion, this work presents a new in vivo model system to study proteins involved in RNA splicing and other gene regulatory mechanisms.
402

Viruses as a Model System for Studies of Eukaryotic mRNA Processing

Lindberg, Anette January 2003 (has links)
Viruses depend on their hosts for the production and spread of new virus particles. For efficient virus replication, the viral genes have adapted the strategy of being recognized and processed by the cellular biosynthetic machineries. Viruses therefore provide an important tool to study the cellular machinery regulating gene expression. In this thesis, we have used two model DNA viruses; herpes simplex virus (HSV) and adenovirus, to study RNA processing at the level of pre-mRNA splicing in mammalian cells. During a lytic infection, HSV cause an almost complete shut-off of host cell gene expression. Importantly, HSV infection cause inhibition of pre-mRNA splicing which is possibly advantageous to the virus, as only four HSV genes contain introns. The HSV immediate early protein, ICP27, has been shown to modulate several post-transcriptional processes such as polyadenylation and pre-mRNA splicing. We have studied the role of ICP27 as an inhibitor of pre-mRNA splicing. We show that ICP27 inhibits pre-mRNA splicing in vitro in the absence of other HSV proteins. We further show that ICP27 inhibits splicing at the level of spliceosome assembly. Importantly, ICP27 induced inhibition of splicing can be reversed, either by the addition of purified SR proteins or by the addition of an SR protein specific kinase, SRPK1. We propose that SR proteins are prime candidates as mediators of the inhibitory effect of ICP27 on pre-mRNA splicing. In order to learn more about how splicing is organized in the cell nucleus in vivo, we investigated how cellular splicing factors are recruited to sites of transcription and splicing in adenovirus infected cells using confocal microscopy. Our results showed that the SR proteins, ASF/SF2 and SC35, are efficiently recruited to sites in the nucleus where adenovirus genes are transcribed and the resulting pre-mRNAs are processed. Our results demonstrate that only one of the two RNA recognition motifs (RRMs) present in the ASF/SF2 protein is required for its recruitment to active sites of splicing. The arginine/serine rich (RS) domain in ASF/SF2 is redundant and insufficient for the translocation of the protein to active viral polymerase II genes in adenovirus infected cells.
403

Wnt/β-Catenin Signalling in Parathyroid Tumours

Björklund, Peyman January 2007 (has links)
Primary hyperparathyroidism (pHPT) due to parathyroid tumours with hypersecretion of parathyroid hormone and hypercalcaemia is a common disease with incompletely understood etiology affecting more than 1 % of the population, primarily postmenopausal women. In secondary hyperparathyroidism (sHPT), parathyroid tumours develop in response to calcium and vitamin D deficiency generally in patients with uraemia. HPT is usually treated by surgical removal of enlarged parathyroid glands. The aim of this thesis was to examine the Wnt/β-catenin signalling pathway in parathyroid tumours. Aberrantly accumulated β-catenin was found in all analysed pHPT and sHPT tumours, with a stabilising homozygous mutation (Ser37Ala) in 7.3% of the pHPT tumours. Truncation of the APC protein was not found. MYC, a β-catenin target gene was overexpressed in a substantial fraction of pHPT and sHPT parathyroid tumours. A parathyroid tumour cell line (sHPT-1) was established from a hyperplastic gland removed at operation of a patient with sHPT. The cells produced parathyroid hormone and grew with a doubling time of approximately 72 hours. Stabilised nonphosphorylated transcriptionally active β-catenin was expressed. Efficient transfection of siRNA against β-catenin decreased expression of cyclin D1 and MYC, and inhibited cell growth with ensuring cell death. The Wnt coreceptor LRP5 was found expressed with an internal deletion of 142 amino acids (LRP5Δ) in 86% and 100% of pHPT and sHPT tumours, respectively. Stabilising mutation of β-catenin and expression of LRP5Δ was mutually exclusive. Expression of LRP5Δ was required to maintain the nonphosphorylated transcriptionally active ß-catenin level, MYC expression, parathyroid cell growth in vitro, and tumour growth in transplanted SCID mice. Wnt3 ligand and LRP5Δ strongly activated transcription, and LRP5Δ was insensitive to inhibition by DKK1. Aberrant accumulation of β-catenin by stabilising mutation or expression of LRP5Δ appears as a common pathogenic pathway for hyperparathyroid disease. LRP5Δ in particular presents a potential target for therapeutic intervention.
404

Biomolecular Analysis by Dual-Tag Microarrays and Single Molecule Amplification

Ericsson, Olle January 2008 (has links)
Padlock probes and proximity ligation are two powerful molecular tools for detection of nucleic acids and proteins, respectively. Both methods result in the formation of DNA reporter molecules upon recognition of specific target molecules. These reporter molecules can be designed to include tag sequences that can be analyzed by techniques for nucleic acid analysis. Herein, I present a dual-tag microarray (DTM) platform that is suitable for high-performance analyses of DNA reporter molecule libraries, generated by padlock and proximity probing reactions. The DTM platform was applied for analysis of mRNA transcripts using padlock probes, and of cytokines using proximity ligation. The platform drastically improved specificity of detection, and it allowed precise measurements of proteins and nucleic acids over wide dynamic ranges. The thesis also presents two techniques for multi-probe analyses of biomolecules: the triple-specific proximity ligation assay (3PLA) for protein analyses, and the spliceotyping assay for mRNA analyses. 3PLA allows highly specific measurements of as little as hundreds of target protein molecules by interrogating three target epitopes simultaneously. In spliceotyping the exon composition of individual transcripts are represented as a series of tag sequences in DNA reporter molecules, via a series of target-dependent ligation reactions. Next, the splicing patterns along individual transcripts can be revealed by amplified single molecule detection and step-wise decoding.
405

Computational Approaches to the Identification and Characterization of Non-Coding RNA Genes

Larsson, Pontus January 2009 (has links)
Non-coding RNAs (ncRNAs) have emerged as highly diverse and powerful key players in the cell, the range of capabilities spanning from catalyzing essential processes in all living organisms, e.g. protein synthesis, to being highly specific regulators of gene expression. To fully understand the functional significance of ncRNAs, it is of critical importance to identify and characterize the repertoire of ncRNAs in the cell. Practically every genome-wide screen to identify ncRNAs has revealed large numbers of expressed ncRNAs and often identified species-specific ncRNA families of unknown function. Recent years' advancement in high-throughput sequencing techniques necessitates efficient and reliable methods for computational identification and annotation of genes. A major aim in the work underlying this thesis has been to develop and use computational tools for the identification and characterization of ncRNA genes. We used computational approaches in combination with experimental methods to study the ncRNA repertoire of the model organism Dictyostelium discoideum. We report ncRNA genes belonging to well-characterized gene families as well as previously unknown and potentially species-specific ncRNA families. The complicated task of de novo ncRNA gene prediction was successfully addressed by developing a method for nucleotide composition-based gene prediction using maximal-scoring partial sums and considering overlapping dinucleotides. We also report a substantial heterogeneity among human spliceosomal snRNAs. Northern blot analysis and cDNA cloning, as well as bioinformatical analysis of publicly available microarray data, revealed a large number of expressed snRNAs. In particular, U1 snRNA variants with several nucleotide substitutions that could potentially have dramatic effects on splice site recognition were identified. In conclusion, we have by using computational approaches combined with experimental analysis identified a rich and diverse ncRNA repertoire in the eukaryotes D. discoideum and Homo sapiens. The surprising diversity among the snRNAs in H. sapiens suggests a functional involvement in recognition of non-canonical introns and regulation of messenger RNA splicing.
406

Molecular Mechanisms of Frontotemporal Lobar Degeneration

Skoglund, Lena January 2009 (has links)
The aim of this thesis was to identify genetic factors involved in frontotemporal lobar degeneration (FTLD), a neurodegenerative disorder clinically characterised by a progressive change in personality, behaviour and language. FTLD is a genetically complex disorder and a positive family history is found in up to 40% of the cases. In 10-20% of the familial cases the disease can be explained by mutations in the gene encoding the microtubule associated protein tau (MAPT). In the first study we describe the clinical and neuropathological features of a Finnish family with FTLD caused by a mutation in MAPT. We also provide evidence that the pathogenic mechanism of this mutation is through altered splicing of MAPT transcripts. Recently, mutations in the gene encoding progranulin (PGRN) were identified as a major cause of FTLD. In the second study we describe a Swedish family with FTLD caused by a frameshift mutation in PGRN. We provide a clinical and neuropathological description of the family, as well as evidence that the pathogenicity of this mutation is through nonsense-mediated decay of the mutant mRNA transcripts and PGRN haploinsufficiency. In the third study we describe a novel PGRN splice site mutation and a previously described PGRN frameshift mutation, found in a mutation screen of 51 FTLD patients. We describe the clinical and neuropathological characteristics of the mutation carriers and demonstrate that haploinsufficiency is the pathogenic mechanism of the two mutations. In the fourth study we investigate the prevalence of PGRN and MAPT gene dosage alterations in 39 patients with FTLD. No gene dosage alterations were identified, indicating that variations in copy number of the PGRN and MAPT genes are not a common cause of disease, at least not in this FTLD patient collection.
407

Construction of Adenovirus Vectors for Studies of Protein Function and RNA Interference

Berenjian, Saideh January 2006 (has links)
During an adenovirus infection the accumulation of alternatively spliced mRNAs is subjected to a tight temporal regulation. The IIIa protein is a structural protein expressed exclusively late after infection. To study the significance of the restricted IIIa protein expression we used a Tet-ON regulated adenoviral vector to overexpress the IIIa protein during the early phase of infection. The results show that unregulated IIIa protein expression caused a reduction in late viral protein accumulation and a slight block of viral DNA replication. Further, the results indicate that IIIa splicing might be subjected to a regulation via a feed back loop stimulating its own expression. To improve the efficacy of vectors for regulated transgene expression, we constructed binary adenoviral vectors based on the Tet-ON and Tet-OFF systems. These vectors encode both the transcriptional activator and the tetracycline-regulated expression cassette from the same viral unit, ensuring that each infected cell will express both the activator and the reporter gene. In model experiments this system was shown to result in a tight control of gene expression with no detectable background expression of the transgene and induction levels reaching 500-600 fold. Introduction of dsRNA into a cell will induce a sequence specific degradation of the homologous mRNA via a mechanism named RNA interference (RNAi). The adenovirus VA RNAs are short highly structured RNAs that are expressed in large amounts late during an adenovirus infection. Here we showed that both VA RNAI and VA RNAII functions as virus-encoded suppressors of RNAi, by interfering with the activity of Dicer, the enzyme that cleaves the initial dsRNA to short-interfering RNAs (siRNAs) that mediate RNAi. Further, the VA RNAs themselves are substrates for Dicer and are cleaved into siRNAs in vivo that are incorporated into active RNA-induced silencing complexes. There is a great interest in developing novel therapeutic strategies based on RNAi. We constructed adenoviral vectors that express short hairpin RNAs, which in vivo will be cleaved to siRNAs that induce sequence-specific RNAi. We compared the efficiency of RNAi induced by vectors based on the viral VA RNAI and the human U6 promoters. Our results suggest that under conditions where the recombinant virus does not replicate, the VA RNA promoter is more effective in down regulating target gene expression, whereas the U6 promoter was more effective under replicative conditions.
408

The mechanism by which TCERG1 inhibits the growth arrest activity of C/EBP<i>a</i>

Banman, Shanna 08 April 2010
Transcription elongation regulator 1 (TCERG1) is a nuclear protein involved in transcriptional elongation and splicing events, suggesting these two activities may be connected. Moreover, TCERG1 was recently identified as a novel interactor and co-repressor of CCAAT/Enhancer Binding Protein &alpha; (C/EBP&alpha;) transcriptional activity, suggesting TCERG1 has additional biological roles. Interestingly, TCERG1 also inhibits the growth arrest activity of C/EBP&alpha;. Additionally, the original clone found to interact with C/EBP&alpha; consisted of only the amino-terminal domain of TCERG1 and functional analysis of this clone indicated that it retained the ability to repress both C/EBP&alpha; mediated growth arrest and transcriptional activity. Furthermore, a TCERG1 mutant whose amino-terminal region was deleted was unable to interact with or repress the transcriptional and growth arrest activities of C/EBP&alpha;, suggesting the functional domain(s) lie elsewhere. In this study, domains of TCERG1 were examined for the ability to inhibit C/EBP&alpha;-mediated growth arrest and the mechanism whereby this effect occurs. By exploiting fluorescent properties of expressed proteins fused with green fluorescent protein, the extent to which each TCERG1 mutant was able to reverse C/EBP&alpha;-mediated growth arrest of cultured cells was assessed. Our analyses suggest that the inhibitory activity of TCERG1 lies within the amino-terminal region and may involve WWI and WWII domains within this region. Additionally, laser scanning confocal microscopy (LCSM) was used to visualize the subnuclear localization of fluorescent proteins fused to TCERG1 and C/EBP&alpha;. When expressed alone, TCERG1 localized to splicing factor-rich nuclear speckles while C/EBP&alpha; was found to reside in discrete punctate foci, both localization patterns being distinct and different from each other. Results from co-localization studies after co-expressing both proteins indicate an alteration in the subnuclear distribution of TCERG1. Furthermore, TCERG1 co-localizes with C/EBP&alpha;, suggesting a possible mechanism whereby TCERG1 inhibits the growth arrest and transcriptional activities mediated by C/EBP&alpha;.
409

Understanding the Mechanism of Aberrant FLVCR1 Splicing and Disrupted erythropoiesis in Diamond-Blackfan Anemia

Aidoo, Francisca Ama 24 July 2012 (has links)
Diamond Blackfan Anemia (DBA) is a congenital disorder characterized by a specific reduction in erythroid progenitor cells. Approximately 55% of patients have heterozygous mutations in ribosomal protein with 25% of these mutations in RPS19. However, it is unclear how a defect in ribosomal proteins specifically disrupts erythroid development. FLVCR1, a heme exporter, has been implicated as a potential DBA factor. FLVCR1 is essential for erythropoiesis as its disruption leads to apoptosis and disrupted erythroid differentiation. Though no FLVCR1 mutations have been found in DBA patients, our lab has shown that it is aberrantly spliced in DBA erythroid cells. Using RPS19 reduced K562 erythroid cells, I found that disruption of RPS19 leads to aberrant FLVCR1 splicing, disrupted erythropoiesis and reduced Tra2-β, ASF2 and SRp30c protein expression. This was specific to DBA as I did not find these features in a cell culture model of Shwachmann Diamond Syndrome, another ribosomal disorder.
410

Understanding the Mechanism of Aberrant FLVCR1 Splicing and Disrupted erythropoiesis in Diamond-Blackfan Anemia

Aidoo, Francisca Ama 24 July 2012 (has links)
Diamond Blackfan Anemia (DBA) is a congenital disorder characterized by a specific reduction in erythroid progenitor cells. Approximately 55% of patients have heterozygous mutations in ribosomal protein with 25% of these mutations in RPS19. However, it is unclear how a defect in ribosomal proteins specifically disrupts erythroid development. FLVCR1, a heme exporter, has been implicated as a potential DBA factor. FLVCR1 is essential for erythropoiesis as its disruption leads to apoptosis and disrupted erythroid differentiation. Though no FLVCR1 mutations have been found in DBA patients, our lab has shown that it is aberrantly spliced in DBA erythroid cells. Using RPS19 reduced K562 erythroid cells, I found that disruption of RPS19 leads to aberrant FLVCR1 splicing, disrupted erythropoiesis and reduced Tra2-β, ASF2 and SRp30c protein expression. This was specific to DBA as I did not find these features in a cell culture model of Shwachmann Diamond Syndrome, another ribosomal disorder.

Page generated in 0.017 seconds