• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régulation transcriptionnelle et post-transcriptionnelle du gène LAT codant un cluster de microARN et du gène très précoce ICP27 de l'herpesvirus oncogène de la maladie de Marek / Transcriptional and post-transcriptional regulation of the microRNA-encoding gene LAT and the immediate early gene ICP27 of the oncogenic herpesvirus Marek's disease virus

Strassheim, Swantje 29 March 2013 (has links)
Le Gallid herpesvirus 2 est un virus oncogène responsable des lymphomes T chez les poulets. L´infection par ce virus est divisée en une phase lytique dépendante de l´expression des gènes très précoces ICP4 et ICP27 et une phase latente, caractérisée par l´expression de l’ARN long non codant LAT. Nous avons montré que le gène LAT exprime de transcrits épissés alternativement, plaçant le cluster de microARN mdv1-miR-M8-M10 dans leur premier intron. Un microARN de ce cluster régule l’expression d’ICP4 et ICP27. L’étude du promoteur d’ICP27 a permis d’identifier plusieurs éléments de réponse (ER) importants, dont une boîte GC et des ER AP1 et CRE, et montré que le promoteur n’est pas transactivé par la protéine virale VP16. Nous avons identifié un transcrit épissé d’ICP27, piloté par le promoteur gK et encodant une isoforme tronquée d’ICP27. Les deux isoformes d’ICP27 colocalise avec les protéines SR du splicéosome dans le noyau, mais sont associées à des localisations différentes. / Gallid herpesvirus2 (GaHV-2) is an oncogenic herpesvirus responsible of T-cell lymphoma in chicken. GaHV-2 infections are divided into a lytic phase, depending on the expression of immediate earky genes like ICP4 and ICP27, and a latent phase characterized by the expression of the long non-coding RNA LAT. In this study, we have shown that the LAT is expressed as several highly spliced transcripts, all placing the microRNA clyster mdv1-miR-M8-M10 in their first intron. One of those microRNAs regulated the expression of ICP4 and ICP27. Studies on the ICP27 promoter allowed us to identify several important response elements (REs), including a GC box and AP1 and CRE REs, and to show that the viral protein VP16 does not transactivate the promoter. We identified a spliced transcript driven by the gK promoter that encodes a truncated ICP27 isoforms. Both isoforms of ICP27 are colocalized with spliceosomal SR proteins in the nucleus, but show a slightly different localization.
2

Régulation de l'épissage de la télomérase lors de la lymphomagenèse induite par l'herpèsvirus oncogène aviaire de la maladie de marek / Regulation of splicing of the avian telomerase gene during lymphomagenesis induced by an avian oncogenic herpesvirus of Marek disease

Amor, Souheila 10 December 2010 (has links)
La télomérase, composée de l‘ARN TR et de la protéine TERT, responsable du maintien de la longueur des télomères est surexprimée dans la majorité des cellules cancéreuses. La dynamique de la régulation post-transcriptionnelle de TERT sur l‘activation de la télomérase a été étudiée dans le modèle de lymphomagenèse induite par l‘herpesvirus oncogène aviaire de la maladie de Marek. L‘augmentation de l‘activité télomérase des TCD4+ lors de l‘apparition des lymphomes résulte d‘une hausse du transcrit constitutif et de celle des transcrits cibles de la voie de dégradation du « non-sense mediated decay » (NMD) alors que l‘activité télomérase basale des TCD4+ non infectés est contrôlée par les isoformes dominantes négatives. La caractérisation de la protéine virale ICP27 de MDV-1, régulateur potentiel de l‘épissage des gènes, qui s‘exprime pendant la phase de réplication lytique du virus a complété cette étude. ICP27 est capable de co-localiser et d‘interagir avec les protéines SR du splicéosome ainsi que de réguler négativement l‘épissage des gènes cellulaire TERT et viral vIL8 de manière similaire à ICP27 de l‘herpesvirus simplex 1. Le modèle naturel de lymphomagenèse induite par MDV-1 a permis d‘établir pour la première fois un lien entre l‘activation de la télomérase in vivo et la régulation de l‘épissage de TERT, à laquelle pourrait participer la protéine virale ICP27. / The telomerase, consisting of an RNA template (TR) and a reverse transcriptase (TERT) maintains telomere length and is highly expressed in the majority of cancer cells. The splicing regulation of TERT was studied in Marek‘s disease (MD), a natural lymphoma induced by MDV-1, the avian MD herpesvirus. Telomerase activation observed in TCD4+ cells at the onset of MD lymphoma was due to an increase of constitutively spliced and « non-sense mediated decay » (NMD) while basal telomerase activity of non infected TCD4+ cells was controlled by dominant negative isoforms. In addition, the viral protein ICP27, a putative regulator of splicing, expressed during MDV-1 lytic infection was characterised. ICP27 co-localized and interacted with spliceosome SR proteins and negatively controlled splicing of TERT and vIL8 viral gene in a way similar to that of ICP27 of herpesvirus simplex 1. The MD model provides the only data on the in vivo regulation of TERT splicing, possibly mediated by ICP27, and telomerase activation during lymphomagenesis induced by a herpesvirus in its natural host.
3

Viruses as a Model System for Studies of Eukaryotic mRNA Processing

Lindberg, Anette January 2003 (has links)
<p>Viruses depend on their hosts for the production and spread of new virus particles. For efficient virus replication, the viral genes have adapted the strategy of being recognized and processed by the cellular biosynthetic machineries. Viruses therefore provide an important tool to study the cellular machinery regulating gene expression. In this thesis, we have used two model DNA viruses; herpes simplex virus (HSV) and adenovirus, to study RNA processing at the level of pre-mRNA splicing in mammalian cells. </p><p>During a lytic infection, HSV cause an almost complete shut-off of host cell gene expression. Importantly, HSV infection cause inhibition of pre-mRNA splicing which is possibly advantageous to the virus, as only four HSV genes contain introns. </p><p>The HSV immediate early protein, ICP27, has been shown to modulate several post-transcriptional processes such as polyadenylation and pre-mRNA splicing. We have studied the role of ICP27 as an inhibitor of pre-mRNA splicing.</p><p>We show that ICP27 inhibits pre-mRNA splicing <i>in vitro</i> in the absence of other HSV proteins. We further show that ICP27 inhibits splicing at the level of spliceosome assembly. Importantly, ICP27 induced inhibition of splicing can be reversed, either by the addition of purified SR proteins or by the addition of an SR protein specific kinase, SRPK1. We propose that SR proteins are prime candidates as mediators of the inhibitory effect of ICP27 on pre-mRNA splicing. </p><p>In order to learn more about how splicing is organized in the cell nucleus <i>in vivo</i>, we investigated how cellular splicing factors are recruited to sites of transcription and splicing in adenovirus infected cells using confocal microscopy. Our results showed that the SR proteins, ASF/SF2 and SC35, are efficiently recruited to sites in the nucleus where adenovirus genes are transcribed and the resulting pre-mRNAs are processed. Our results demonstrate that only one of the two RNA recognition motifs (RRMs) present in the ASF/SF2 protein is required for its recruitment to active sites of splicing. The arginine/serine rich (RS) domain in ASF/SF2 is redundant and insufficient for the translocation of the protein to active viral polymerase II genes in adenovirus infected cells.</p>
4

Viruses as a Model System for Studies of Eukaryotic mRNA Processing

Lindberg, Anette January 2003 (has links)
Viruses depend on their hosts for the production and spread of new virus particles. For efficient virus replication, the viral genes have adapted the strategy of being recognized and processed by the cellular biosynthetic machineries. Viruses therefore provide an important tool to study the cellular machinery regulating gene expression. In this thesis, we have used two model DNA viruses; herpes simplex virus (HSV) and adenovirus, to study RNA processing at the level of pre-mRNA splicing in mammalian cells. During a lytic infection, HSV cause an almost complete shut-off of host cell gene expression. Importantly, HSV infection cause inhibition of pre-mRNA splicing which is possibly advantageous to the virus, as only four HSV genes contain introns. The HSV immediate early protein, ICP27, has been shown to modulate several post-transcriptional processes such as polyadenylation and pre-mRNA splicing. We have studied the role of ICP27 as an inhibitor of pre-mRNA splicing. We show that ICP27 inhibits pre-mRNA splicing in vitro in the absence of other HSV proteins. We further show that ICP27 inhibits splicing at the level of spliceosome assembly. Importantly, ICP27 induced inhibition of splicing can be reversed, either by the addition of purified SR proteins or by the addition of an SR protein specific kinase, SRPK1. We propose that SR proteins are prime candidates as mediators of the inhibitory effect of ICP27 on pre-mRNA splicing. In order to learn more about how splicing is organized in the cell nucleus in vivo, we investigated how cellular splicing factors are recruited to sites of transcription and splicing in adenovirus infected cells using confocal microscopy. Our results showed that the SR proteins, ASF/SF2 and SC35, are efficiently recruited to sites in the nucleus where adenovirus genes are transcribed and the resulting pre-mRNAs are processed. Our results demonstrate that only one of the two RNA recognition motifs (RRMs) present in the ASF/SF2 protein is required for its recruitment to active sites of splicing. The arginine/serine rich (RS) domain in ASF/SF2 is redundant and insufficient for the translocation of the protein to active viral polymerase II genes in adenovirus infected cells.

Page generated in 0.0758 seconds