• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos estruturais e funcionais da Selenofosfato Sintetase de Trypanosoma brucei e Leishmania major / Structural and functional studies of Selenophosphate Synthetase from Trypanosoma brucei and Leishmania major

Faim, Lívia Maria 24 April 2014 (has links)
A síntese e incorporação de Selenocisteína em selenoproteínas ocorre co tradicionalmente direcionado pelo códon de terminação UGA. Uma maquinaria única de enzimas e fatores proteicos é necessária para síntese de selenocisteína e decodificação do códon UGA de terminação da tradução para inserção de selenocisteína. Dentre as enzimas envolvidas, está a Selenonofosfato sintetase (SPS2), responsável por catalisar a ativação de seleneto com adenosina 5 trifosfato (ATP) para gerar selenofosfato, o doador de selênio reativo que é substrato da próxima enzima da via para formação de selenocisteína. Estudos recentes identificaram a presença da via de biossíntese de selenocisteína em parasitas kinetoplastidas e subsequentemente a proteína SPS2 de Trypanosoma brucei e Leishmania major foram caracterizadas. Entretanto, trabalhos estruturais e funcionais das enzimas permaneceram não reportados. Dessa forma, este trabalho teve seu foco estabelecido na realização de estudos estruturais e funcionais da SPS2 de T. brucei e L. major. Para caracterização da proteína em solução foram empregadas as técnicas de cromatografia de exclusão de tamanho, eletroforese em gel nativo, espalhamento dinâmico de luz (DLS), espalhamento de Raios X a baixo ângulo (SAXS) e ultracentrifugação analítica (AUC). Os resultados obtidos revelaram uma mistura de dímeros e tetrâmeros em solução para ambas SPS2 com predominância de dímeros. Muitas estratégias de cristalização e melhorias na difração foram utilizadas para obtenção de cristais proteicos apropriados para determinação da estrutura cristalográfica das SPS2. Cristais de SPS2 de T. brucei inteira e SPS2 de L. major com N-terminal truncado foram obtidos. Porém, somente a estrutura cristalográfica da proteína SPS2 de Leishmania major com o N-terminal truncado a 1,9 Å de resolução foi determinada. Estudos comparativos entre esta estrutura e outras selenofosfato sintetases mostrou a mesma organização estrutural entre elas. Experimento de complementação funcional das SPS2 truncadas e mutadas pontualmente revelou três resíduos localizados no N-terminal como fundamentais para atividade da SPS2 (Leu33, Thr34; Tyr36 e Leu37, Thr38; Tyr40 para SPS2 de T. brucei e L.major, respectivamente). Análise mutacional baseada nas estruturas cristalográficas indicou que estes resíduos podem estar envolvidos no mecanismo de entrega do selenofosfato para a próxima enzima da via, a Selenocisteína sintase. Isto poderia evitar a difusão de compostos reativos de selênio, resultando em uma eficiência na síntese de selenocisteína. Os resultados aqui apresentados forneceram informações importantes e novas perspectivas a respeito do mecanismo de catalise da enzima selenofosfato sintetase na via de síntese de selenocisteína. / The synthesis and incorporation of selenocysteine in selenoproteins occurs cotranslationally directed by the UGA stop codon. An unique machine of enzymes and protein factors are required for selenocysteine synthesis and decoding of UGA translation termination codon for the insertion of selenocysteine. Among the enzymes involved, Selenonofosfato synthetase (SPS2) is the responsible for catalyzing the activation of selenite with adenosine 5\' - triphosphate (ATP) to generate selenophosphate, the reactive selenium donor, which is substrate of the next pathway enzyme to formation of selenocysteine. Recent studies have identified the presence of selenocysteine biosynthesis in parasites Kinetoplastidas and subsequently, the SPS2 protein of Trypanosoma brucei and Leishmania major have been characterized, however, structural and functional studies of enzymes remain not reported. Thus, this present work report biochemical and biophysical studies of SPS2. To characterize the protein in solution, there were employed the techniques of size exclusion chromatography, native gel electrophoresis, dynamic light scattering (DLS), Small angle X-ray scattering angle (SAXS) and analytical ultracentrifugation (AUC). The results revealed a mixture of dimmers and tetramers in solution for SPS2 with predominance of dimers. Many strategies and improvements in crystallization and diffraction were used to obtain suitable SPS2 crystals for determination of the crystallography structure. T. brucei SPS2 crystals and L. major SPS2 crystals with truncated N-terminal were obtained. However, only the structure of SPS2 protein from L. major with truncated N-terminal to 1.9 Å of resolution was solved. Comparative studies of this structure with other selenophosphate synthases revealed the same structural organization. Functional complementation experiments of truncated and mutated SPS2 revealed three residues located in the SPS2 N- terminal as essential for the activity of the enzyme (Leu33 , Thr34 and Tyr36 to T. brucei SPS2; Leu37 , Thr38 and Tyr40 to L. major SPS2) . Mutational analysis based on the crystal structures indicated that these residues may be involved in the mechanism of selenophosphate delivery to the pathway enzyme next, the selenocysteine synthase. This found could prevent the diffusion of reactive selenium, resulting in selenocysteine synthesis efficient. The results presented here provided important information and new insights about the of selenophosphate synthetase catalysis mechanism in the selenocysteine synthesis pathway.
2

Estudos estruturais e funcionais da Selenofosfato Sintetase de Trypanosoma brucei e Leishmania major / Structural and functional studies of Selenophosphate Synthetase from Trypanosoma brucei and Leishmania major

Lívia Maria Faim 24 April 2014 (has links)
A síntese e incorporação de Selenocisteína em selenoproteínas ocorre co tradicionalmente direcionado pelo códon de terminação UGA. Uma maquinaria única de enzimas e fatores proteicos é necessária para síntese de selenocisteína e decodificação do códon UGA de terminação da tradução para inserção de selenocisteína. Dentre as enzimas envolvidas, está a Selenonofosfato sintetase (SPS2), responsável por catalisar a ativação de seleneto com adenosina 5 trifosfato (ATP) para gerar selenofosfato, o doador de selênio reativo que é substrato da próxima enzima da via para formação de selenocisteína. Estudos recentes identificaram a presença da via de biossíntese de selenocisteína em parasitas kinetoplastidas e subsequentemente a proteína SPS2 de Trypanosoma brucei e Leishmania major foram caracterizadas. Entretanto, trabalhos estruturais e funcionais das enzimas permaneceram não reportados. Dessa forma, este trabalho teve seu foco estabelecido na realização de estudos estruturais e funcionais da SPS2 de T. brucei e L. major. Para caracterização da proteína em solução foram empregadas as técnicas de cromatografia de exclusão de tamanho, eletroforese em gel nativo, espalhamento dinâmico de luz (DLS), espalhamento de Raios X a baixo ângulo (SAXS) e ultracentrifugação analítica (AUC). Os resultados obtidos revelaram uma mistura de dímeros e tetrâmeros em solução para ambas SPS2 com predominância de dímeros. Muitas estratégias de cristalização e melhorias na difração foram utilizadas para obtenção de cristais proteicos apropriados para determinação da estrutura cristalográfica das SPS2. Cristais de SPS2 de T. brucei inteira e SPS2 de L. major com N-terminal truncado foram obtidos. Porém, somente a estrutura cristalográfica da proteína SPS2 de Leishmania major com o N-terminal truncado a 1,9 Å de resolução foi determinada. Estudos comparativos entre esta estrutura e outras selenofosfato sintetases mostrou a mesma organização estrutural entre elas. Experimento de complementação funcional das SPS2 truncadas e mutadas pontualmente revelou três resíduos localizados no N-terminal como fundamentais para atividade da SPS2 (Leu33, Thr34; Tyr36 e Leu37, Thr38; Tyr40 para SPS2 de T. brucei e L.major, respectivamente). Análise mutacional baseada nas estruturas cristalográficas indicou que estes resíduos podem estar envolvidos no mecanismo de entrega do selenofosfato para a próxima enzima da via, a Selenocisteína sintase. Isto poderia evitar a difusão de compostos reativos de selênio, resultando em uma eficiência na síntese de selenocisteína. Os resultados aqui apresentados forneceram informações importantes e novas perspectivas a respeito do mecanismo de catalise da enzima selenofosfato sintetase na via de síntese de selenocisteína. / The synthesis and incorporation of selenocysteine in selenoproteins occurs cotranslationally directed by the UGA stop codon. An unique machine of enzymes and protein factors are required for selenocysteine synthesis and decoding of UGA translation termination codon for the insertion of selenocysteine. Among the enzymes involved, Selenonofosfato synthetase (SPS2) is the responsible for catalyzing the activation of selenite with adenosine 5\' - triphosphate (ATP) to generate selenophosphate, the reactive selenium donor, which is substrate of the next pathway enzyme to formation of selenocysteine. Recent studies have identified the presence of selenocysteine biosynthesis in parasites Kinetoplastidas and subsequently, the SPS2 protein of Trypanosoma brucei and Leishmania major have been characterized, however, structural and functional studies of enzymes remain not reported. Thus, this present work report biochemical and biophysical studies of SPS2. To characterize the protein in solution, there were employed the techniques of size exclusion chromatography, native gel electrophoresis, dynamic light scattering (DLS), Small angle X-ray scattering angle (SAXS) and analytical ultracentrifugation (AUC). The results revealed a mixture of dimmers and tetramers in solution for SPS2 with predominance of dimers. Many strategies and improvements in crystallization and diffraction were used to obtain suitable SPS2 crystals for determination of the crystallography structure. T. brucei SPS2 crystals and L. major SPS2 crystals with truncated N-terminal were obtained. However, only the structure of SPS2 protein from L. major with truncated N-terminal to 1.9 Å of resolution was solved. Comparative studies of this structure with other selenophosphate synthases revealed the same structural organization. Functional complementation experiments of truncated and mutated SPS2 revealed three residues located in the SPS2 N- terminal as essential for the activity of the enzyme (Leu33 , Thr34 and Tyr36 to T. brucei SPS2; Leu37 , Thr38 and Tyr40 to L. major SPS2) . Mutational analysis based on the crystal structures indicated that these residues may be involved in the mechanism of selenophosphate delivery to the pathway enzyme next, the selenocysteine synthase. This found could prevent the diffusion of reactive selenium, resulting in selenocysteine synthesis efficient. The results presented here provided important information and new insights about the of selenophosphate synthetase catalysis mechanism in the selenocysteine synthesis pathway.
3

Étude de la dynamique des interactions des constituants du complexe de biosynthèse et d’insertion de la sélénocystéine dans la traduction des sélénoprotéines in vivo

Pageau-Crevier, Etienne 07 1900 (has links)
Les sélénoprotéines sont des protéines auxquelles des sélénocystéines, soit le 21e acide aminé, sont incorporées durant leur traduction. Plus précisément, la sélénocystéine (Sec) est un dérivé métabolique de la sérine, mais structurellement équivalent à une cystéine dont on a remplacé l'atome de soufre par du sélénium. Elle se distingue des autres acides aminés puisqu’elle possède sa propre synthétase qui sert à convertir la sérine en Sec alors que le résidu est déjà fixé à l’ARNt. La position d’une Sec sur l’ARNm est indiquée par le codon UGA étant habituellement un signal STOP introduisant le concept de recoding. Grâce à une machinerie métabolique spécifique à l'ARNtSec et à la présence d’un SecIS (Selenocystein Insertion Sequence) sur l’ARNm, ce codon permet la présence d'une Sec dans la protéine. Il est connu que la synthèse débute avec l’acétylation de l’ARNt[Ser]Sec par la seryl-ARNt synthétase (SerRS) afin de donner la seryl-ARNt[Ser]Sec. Cette dernière est subséquemment phosphorylée par l’O-phosphoséryl-ARNt[Ser]Sec kinase (PSTK) qui donnera l’O-phosphoséryl-ARNt[Ser]Sec. Par la suite, un complexe de plusieurs protéines et cofacteurs, agissant comme machinerie pour l’incorporation des Sec durant la traduction, s’associe avec l’ARNt[Ser]Sec puis l’ARNm et, finalement, les composantes du ribosome. Parmi ces protéines, SepSecS catalyse l’étape finale de la synthèse des Sec en convertissant le O-phosphoseryl-ARNt[Ser]Sec en selenocysteinyl-ARNt[Ser]Sec utilisant le sélénophosphate comme source de sélénium. Des études récentes montrent que l’association avec SECp43 serait nécessaire pour que SepSecS joue son rôle et soit ségrégée au noyau pour s’associer à la machinerie de biosynthèse des sélénoprotéines, soit le complexe moléculaire qui reconnaît le codon UGA. Parmi les protéines de la machinerie de biosynthèse des sélénoprotéines que nous avons analysées, il y a eEFSec, RPL30, SPS2, SPS1, SBP2 et NSEP1. Nos résultats d’analyse de la dynamique de l’interaction entre les constituants de la machinerie de biosynthèse et d’incorporation des Sec, confirment plusieurs données de la littérature, mais remettent en question le modèle jusqu’à maintenant établi. Une meilleure compréhension de la dynamique des interactions entre ses constituants et la régulation de cette dynamique permet d’émettre des hypothèses quant au rôle de la machinerie de biosynthèse des sélénoprotéines et de l’importance de sa complexité. Nous avons analysé les interactions in vivo dans des cellules HEK293T au moyen de la technique de Protein-Fragment Complementation Assay (PCA) en couplant, par un clonage moléculaire, les gènes de chacune des protéines d’intérêt avec des fragments des gènes de la protéine luciférase (hRluc). Nous avons ainsi réalisé une fusion en N-terminal et en C-terminal des fragments de luciférase pour chacune des protéines d’intérêt. Puis, nous avons analysé la dynamique des interactions avec les composantes de la machinerie de biosynthèse des Sec. D’autres travaux seront essentiels afin de bâtir sur les résultats présentés dans cette recherche. / Selenoproteins are proteins that incorporate selenocysteines, which is called the 21st amino acid, during their translation. Specifically, selenocysteine (Sec) is a metabolic derivate of serine, which is structurally equivalent to Cys except for replacement of sulfur with an atom of selenium in the δ-position. It differs from other amino acids since a unique synthetase converts the serine into Sec while the residue is already attached to the tRNA. The codon for Sec on the mRNA is a UGA codon that is usually a STOP signal, introducing the concept of "recoding". Through a specific metabolic machinery for the tRNASec and the presence of a SecIS (Selenocysteine Insertion Sequence) on the mRNA, this codon allows the incorporation of the Sec into the protein. However, the mechanism of biosynthesis of this amino acid and its incorporation into proteins is not well understood. It is known that the synthesis starts with the acetylation of tRNA[Ser]Sec by seryl-tRNA synthetase (SerRS) to give the seryl-tRNA[Ser]Sec. The latter is subsequently phosphorylated by the O-phosphoseryl-tRNA[Ser]Sec kinase (PSTK) which will generate the O-phosphoseryl-tRNA[Ser]Sec. Subsequently, a large complex of several proteins and cofactors acting as machinery for incorporation of Sec during translation, associates with tRNA[Ser]Sec and the mRNA and finally, the components of the ribosome. Among these proteins, SepSecS catalyzes the final step in the biosynthesis of Sec converting O-phosphoseryl-tRNA[Ser]Sec into selenocysteinyl-tRNA[Ser]Sec using monoselenophosphate as a source of selenium. Recent studies showed that the association with SECp43 would be required for SepSecS to play its role to segregate into the nucleus to be associated with the machinery that recognizes the UGA codon. Among the proteins of the biosynthesis machinery of selenoproteins that we analyzed, there are eEFSec, RPL30, SPS2, SPS1, SBP2 and NSEP1. Results of analysis of the dynamics of the interaction between the components of the Sec biosynthetic machinery confirm some data from the literature, but conflict with the model so far established. A better understanding of the dynamics of interactions between its constituents and the reaction of this process would allow us to make assumptions about the role of the biosynthetic machinery of selenoproteins and the importance of its complexity. We analyzed the dynamics of interaction in vivo in HEK293T cells using a Protein-Fragment Complementation Assay (PCA) based on a humanized Renilla luciferase (hRLuc) by coupling, by molecular cloning, genes encoding each protein of interest with gene encoding fragments of the luciferase protein (hRluc). We have thus achieved an expression of fusion of N-terminal and C-terminal fragments for each luciferase protein of interest. Then, we analyzed the dynamics of the interaction with the components of the Sec biosynthetic machinery. Further work will be essential to build on the results presented in this research.
4

Étude de la dynamique des interactions des constituants du complexe de biosynthèse et d’insertion de la sélénocystéine dans la traduction des sélénoprotéines in vivo

Pageau-Crevier, Etienne 07 1900 (has links)
Les sélénoprotéines sont des protéines auxquelles des sélénocystéines, soit le 21e acide aminé, sont incorporées durant leur traduction. Plus précisément, la sélénocystéine (Sec) est un dérivé métabolique de la sérine, mais structurellement équivalent à une cystéine dont on a remplacé l'atome de soufre par du sélénium. Elle se distingue des autres acides aminés puisqu’elle possède sa propre synthétase qui sert à convertir la sérine en Sec alors que le résidu est déjà fixé à l’ARNt. La position d’une Sec sur l’ARNm est indiquée par le codon UGA étant habituellement un signal STOP introduisant le concept de recoding. Grâce à une machinerie métabolique spécifique à l'ARNtSec et à la présence d’un SecIS (Selenocystein Insertion Sequence) sur l’ARNm, ce codon permet la présence d'une Sec dans la protéine. Il est connu que la synthèse débute avec l’acétylation de l’ARNt[Ser]Sec par la seryl-ARNt synthétase (SerRS) afin de donner la seryl-ARNt[Ser]Sec. Cette dernière est subséquemment phosphorylée par l’O-phosphoséryl-ARNt[Ser]Sec kinase (PSTK) qui donnera l’O-phosphoséryl-ARNt[Ser]Sec. Par la suite, un complexe de plusieurs protéines et cofacteurs, agissant comme machinerie pour l’incorporation des Sec durant la traduction, s’associe avec l’ARNt[Ser]Sec puis l’ARNm et, finalement, les composantes du ribosome. Parmi ces protéines, SepSecS catalyse l’étape finale de la synthèse des Sec en convertissant le O-phosphoseryl-ARNt[Ser]Sec en selenocysteinyl-ARNt[Ser]Sec utilisant le sélénophosphate comme source de sélénium. Des études récentes montrent que l’association avec SECp43 serait nécessaire pour que SepSecS joue son rôle et soit ségrégée au noyau pour s’associer à la machinerie de biosynthèse des sélénoprotéines, soit le complexe moléculaire qui reconnaît le codon UGA. Parmi les protéines de la machinerie de biosynthèse des sélénoprotéines que nous avons analysées, il y a eEFSec, RPL30, SPS2, SPS1, SBP2 et NSEP1. Nos résultats d’analyse de la dynamique de l’interaction entre les constituants de la machinerie de biosynthèse et d’incorporation des Sec, confirment plusieurs données de la littérature, mais remettent en question le modèle jusqu’à maintenant établi. Une meilleure compréhension de la dynamique des interactions entre ses constituants et la régulation de cette dynamique permet d’émettre des hypothèses quant au rôle de la machinerie de biosynthèse des sélénoprotéines et de l’importance de sa complexité. Nous avons analysé les interactions in vivo dans des cellules HEK293T au moyen de la technique de Protein-Fragment Complementation Assay (PCA) en couplant, par un clonage moléculaire, les gènes de chacune des protéines d’intérêt avec des fragments des gènes de la protéine luciférase (hRluc). Nous avons ainsi réalisé une fusion en N-terminal et en C-terminal des fragments de luciférase pour chacune des protéines d’intérêt. Puis, nous avons analysé la dynamique des interactions avec les composantes de la machinerie de biosynthèse des Sec. D’autres travaux seront essentiels afin de bâtir sur les résultats présentés dans cette recherche. / Selenoproteins are proteins that incorporate selenocysteines, which is called the 21st amino acid, during their translation. Specifically, selenocysteine (Sec) is a metabolic derivate of serine, which is structurally equivalent to Cys except for replacement of sulfur with an atom of selenium in the δ-position. It differs from other amino acids since a unique synthetase converts the serine into Sec while the residue is already attached to the tRNA. The codon for Sec on the mRNA is a UGA codon that is usually a STOP signal, introducing the concept of "recoding". Through a specific metabolic machinery for the tRNASec and the presence of a SecIS (Selenocysteine Insertion Sequence) on the mRNA, this codon allows the incorporation of the Sec into the protein. However, the mechanism of biosynthesis of this amino acid and its incorporation into proteins is not well understood. It is known that the synthesis starts with the acetylation of tRNA[Ser]Sec by seryl-tRNA synthetase (SerRS) to give the seryl-tRNA[Ser]Sec. The latter is subsequently phosphorylated by the O-phosphoseryl-tRNA[Ser]Sec kinase (PSTK) which will generate the O-phosphoseryl-tRNA[Ser]Sec. Subsequently, a large complex of several proteins and cofactors acting as machinery for incorporation of Sec during translation, associates with tRNA[Ser]Sec and the mRNA and finally, the components of the ribosome. Among these proteins, SepSecS catalyzes the final step in the biosynthesis of Sec converting O-phosphoseryl-tRNA[Ser]Sec into selenocysteinyl-tRNA[Ser]Sec using monoselenophosphate as a source of selenium. Recent studies showed that the association with SECp43 would be required for SepSecS to play its role to segregate into the nucleus to be associated with the machinery that recognizes the UGA codon. Among the proteins of the biosynthesis machinery of selenoproteins that we analyzed, there are eEFSec, RPL30, SPS2, SPS1, SBP2 and NSEP1. Results of analysis of the dynamics of the interaction between the components of the Sec biosynthetic machinery confirm some data from the literature, but conflict with the model so far established. A better understanding of the dynamics of interactions between its constituents and the reaction of this process would allow us to make assumptions about the role of the biosynthetic machinery of selenoproteins and the importance of its complexity. We analyzed the dynamics of interaction in vivo in HEK293T cells using a Protein-Fragment Complementation Assay (PCA) based on a humanized Renilla luciferase (hRLuc) by coupling, by molecular cloning, genes encoding each protein of interest with gene encoding fragments of the luciferase protein (hRluc). We have thus achieved an expression of fusion of N-terminal and C-terminal fragments for each luciferase protein of interest. Then, we analyzed the dynamics of the interaction with the components of the Sec biosynthetic machinery. Further work will be essential to build on the results presented in this research.

Page generated in 0.0165 seconds