1111 |
Numerical modeling of consolidation of marine clay under vacuum preloading incorporating prefabricated vertical drainsHo, Sao Man January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Civil and Environmental Engineering
|
1112 |
Optimization Of Macrostructure In Aluminium FoamsTan, Serdar 01 September 2003 (has links) (PDF)
Pure aluminium and aluminium-5wt % TiO2 aluminium foams were produced by powder metallurgy technique with the use of TiH2 as foaming agent. Two sizes of TiH2 were used: 20µ / m and 3µ / m.
It has been confirmed that high level of compaction is the primary requirement in foaming. It was shown that hot swaging could be used as a method of compaction for foaming as it leads to values close to full density. Pure aluminium foamed at 675° / C and 725° / C leads to a volume expansion between 90-180 %.
A model was developed for pure aluminium to explain the pore initiation and the resultant pore size. The model predicts a critical particle size for TiH2 below which bubbles could not form. The size appears to be in the neighborhood of 30µ / m for 675° / C and 6µ / m for 725° / C and is temperature dependent. Equilibrium pore size appears to be a function of TiH2 particle size and not affected significantly by the temperature of foaming. It has also been shown that depth effect, i.e. hydrostatic pressure of liquid metal, is unimportant in foaming process and can be neglected. According to the model, to produce pores of fine sizes, two requirements must be met: use of fine foaming agent and the use of high foaming temperature.
Al-5 wt % TiO2 was foamed at 750° / C and 800° / C, i.e. at temperatures that yield viscosities similar to pure aluminium. The structure of foamed metal and level of foaming, 120-160%, was similar to pure aluminium. Unlike pure aluminium, internal reactions are dominant feature of TiO2 stabilized systems. Solid content of the system increases as a result of internal reactions between Al-Ti and Al- TiO2. When this change occurs, however, is not known. It is possible that the viscosity of the system may be four times of its original value.
|
1113 |
Use Of Granulated Blast Furnace Slag, Steel Slag And Fly Ash In Cement-bentonite Slurry Wall ConstructionTalefirouz, Davood 01 January 2013 (has links) (PDF)
Slurry walls have been widely used for more than 25 years to control the migration of contaminants in the subsurface. In the USA, vertical barriers are mostly constructed of soil-bentonite using the slurry trench method of construction. In this method, sodium bentonite is mixed with water to form a viscous slurry that is pumped into a trench during excavation to maintain the trench stability. The stable trench is then backfilled with a mixture of soil and slurry having a consistency of high slump concrete. These barriers have been designed primarily for low permeability, generally less than 10&minus / 9 m/s. Some investigations have pointed toward improved performance using admixtures that would provide low permeability. In this study, Soma thermal power plant fly ash, granulated blast furnace slag, lime, and steel slag are used as admixture to improve the performance of slurry walls. Permeability, compressive strength, slump, compressibility properties of the mixtures were found and checked for the minimum requirements. According to the findings of this study, granulated blast furnace slag (GGBS), fly ash and steel slag can be used at certain percentages and curing periods as additive in cement-bentonite barrier wall construction. Permeability of specimens having fly ash decreases by increasing fly ash content. Mixtures having 50 % of GGBS type I with 5 % of lime and 9% bentonite content gave acceptable results in 28 days of curing time. Specimens including 50 % of GGBS type II with 5 % of lime and 9% bentonite content gave the higher permeability value in 28 days of curing time with respect to GGBS type I. In addition, most of the mixtures prepared by steel slag gave the acceptable permeability values in 28 days of curing period. Unconfined compressive strength of all mixtures increase by increasing curing time. Cc, Cr, Cv, kcon values were found from consolidation test results. Permeability values found from consolidation tests are 10 times to 100 times higher than flexible wall k results for the same effective stress of 150 kPa. Generally, mv values are decreasing with increasing curing time. As mv decreases, D increases.
|
1114 |
Estimation et contrôle non-linéaire : application à quelques systèmes quantiques et classiquesMirrahimi, Mazyar 27 January 2011 (has links) (PDF)
Ce manuscrit se décompose en deux parties principales, associées à deux types d'applications assez différentes. Dans la première partie qui comprend les deux premiers chapitres, je m'intéresse à des systèmes issus de problèmes de contrôle et d'estimation en physique quantique; dans la deuxième partie (troisième chapitre du manuscrit), j'étudie la propagation d'ondes électriques le long des fils classiques dans un réseau de lignes de transmission et je considère certains problèmes d'estimation de paramètres. Dans le premier chapitre nous étudions le problème de la planification de trajectoires pour des systèmes quantiques fermés modélisés par des équations de Schrödinger bilinéaire. Nous démontrons alors des résultats de la stabilisation approchée pour le cas d'une boite quantique infinie ainsi que pour le cas d'un potentiel décroissant. Dans les deux cas, le manque de pré-compacité des trajectoires dans des espaces fonctionnels appropriés nous oblige à proposer des méthodes de Lyapunov qui évitent des phénomènes de perte de masse à l'infini. Dans le deuxième chapitre nous étudions le problème de stabilisation de systèmes quantiques en observation. Cette observation nécessite l'ouverture du système à son environnement. Les modèles pertinents pour l'évolution de ce type de systèmes sont des modèles stochastiques basés sur des trajectoires de Monte-Carlo quantiques. Nous étudions alors certains problèmes de stabilisation qui parviennent de vraies expériences physiques. Enfin, dans le chapitre 3 nous considérons le problème d'estimation de paramètres pour un réseau de fils de câblage électrique. Dans ce but, nous étudions deux approches : l'approche temporelle et l'approche fréquentielle. Dans l'approche temporelle, nous considérons le réseau le plus simple qui consiste d'une seule ligne de transmission et nous proposons un algorithme d'identification pour l'équation d'onde associé qui est basé sur l'application des observateurs asymptotiques. Dans l'approche fréquentielle, nous considérons un réseau plus compliqué de la forme étoile. Nous proposons alors des résultats d'identifiabilité basés sur des techniques de l'inverse scattering.
|
1115 |
Debt and deficit in the Czech Republic and FranceHuneau, Mathieu, Doktor, Petr January 2012 (has links)
This thesis is analyzing the development of debt and deficit situation in the Czech Republic and France. Our main research questions are: why the Czech Republic and France have different debt and deficit? What are the effects and causes of debt and deficit? How Czech Republic and France wants to reduce the level of debt and deficit? These are the central questions we try to answer in this thesis. To pursue a systematic analysis, we start with a theoretical section on we described different theories of debt/deficit and budgetary rules effects on the economy in order to understand characteristics of debt issues. From these findings, we have resulted causes and differences of debt situations in our countries, which is part of empirical analysis. This is done by evolution of debt/deficit and factors that affect level of debt/deficit. We analyzed three mains factors and due to this factors that influence debt/deficit we can clearly see why our countries have different levels in debt problem. Regarding this we can say our countries are different in many respects. The major difference is monetary policy due to French member of Eurozone. Also the way how to get from debt issue and find a compromise between government reforms and interests of citizens will vary in the future.
|
1116 |
Sulfate Induced Heave: Addressing Ettringite Behavior in Lime Treated Soils and in Cementitious MaterialsKochyil Sasidharan Nair, Syam Kumar 2010 December 1900 (has links)
Civil engineers are at times required to stabilize sulfate bearing clay soils with calcium based stabilizers. Deleterious heaving in these stabilized soils may result over time. This dissertation addresses critical questions regarding the consequences of treating sulfate laden soils with calcium-based stabilizers. The use of a differential scanning calorimeter was introduced in this research as a tool to quantify the amount of ettringite formed in stabilized soils.
The first part of this dissertation provides a case history analysis of the expansion history compared to the ettringite growth history of three controlled low strength mixtures containing fly ash with relatively high sulfate contents. Ettringite growth and measurable volume changes were monitored simultaneously for mixtures subjected to different environmental conditions. The observations verified the role of water in causing expansion when ettringite mineral is present. Sorption of water by the ettringite molecule was found to be a part of the reason for expansion.
The second part of this dissertation evaluates the existence of threshold sulfate levels in soils as well as the role of soil mineralogy in defining the sensitivity of soils to sulfate-induced damage. A differential scanning calorimeter and thermodynamics based phase diagram approach are used to evaluate the role of soil minerals. The observations substantiated the difference in sensitivity of soils to ettringite formation, and also verified the existence of a threshold level of soluble sulfates in soils that can trigger substantial ettringite growth.
The third part of this dissertation identifies alternative, probable mechanisms of swelling when sulfate laden soils are stabilized with lime. The swelling distress observed in stabilized soils is found to be due to one or a combination of three separate mechanisms: (1) volumetric expansion during ettringite formation, (2) water movement triggered by a high osmotic suction caused by sulfate salts, and (3) the ability of the ettringite mineral to absorb water and contribute to the swelling process.
|
1117 |
Stabilization Of Expansive Soils Using Waste Marble DustBaser, Onur 01 February 2009 (has links) (PDF)
Expansive soils occurring in arid and semi-arid climate regions of the world
cause serious problems on civil engineering structures. Such soils swell when
given an access to water and shrink when they dry out. Several attempts are being
made to control the swell-shrink behavior of these soils. Soil stabilization using
chemical admixtures is the oldest and most widespread method of ground
improvement. In this study, waste limestone dust and waste dolomitic marble
dust, by-products of marble industry, were used for stabilization of expansive
soils. The expansive soil is prepared in laboratory as a mixture of kaolinite and
bentonite. Waste limestone dust and waste dolomitic marble dust were added to
the expansive soil with predetermined percentage of stabilizer varying from 0 to 30 percent. Grain size distribution, consistency limits, chemical and
mineralogical composition, swelling percentage, and rate of swell were
determined for the samples. Swelling percentage decreased and rate of swell
increased with increasing stabilizer percentage. Also, samples were cured for 7
days and 28 days before applying swell tests. Curing of samples affects swell
percentages and rate of swell in positive way.
|
1118 |
Improvement Of Bearing Capacity Of A Soft Soil By The Addition Of Fly AshOzdemir, Murat Aziz 01 May 2011 (has links) (PDF)
ABSTRACT
IMPROVEMENT OF BEARING CAPACITY OF A SOFT SOIL
BY THE ADDITION OF FLY ASH
Ö / ZDEMIR, Murat Aziz
M.Sc., Department of Civil Engineering
Supervisor : Prof. Dr. Erdal Ç / OKÇ / A
Co-Supervisor : Assoc. Prof. Dr. Murat GÜ / LER
May 2011, 119 pages
Soft soils are not suitable for use in runway and highway
construction due to their undesirable characteristics such as poor
grading, low strength, excessive plasticity, tendency to shrink or
swell. By stabilizing such soils with appropriate agents, their
engineering properties can be improved. One of the stabilizing
agents is Class C fly ash.
This study aimed at investigation of bearing capacity
improvement of a soft soil (from Elmadag area) by using Class C
fly ash (from Soma Thermal Power Plant).
In the experimental study, index properties of soft soil and fly
ash stabilized samples are determined. Then modified Proctor
compaction, soaked California Bearing Ratio, and Unconfined
Compressive Strength characteristics of the samples are
investigated.
During the study, the stabilized soil samples are prepared at
different fly ash contents, i.e., 0%, 3%, 5%, 7%, and 10%. The
samples are subjected to soaked California Bearing Ratio tests
after 0, 7, and 28 days of curing. In addition to California
Bearing Ratio tests, Unconfined Compressive Strength tests with
0, 7, and 28 days of curing are performed samples. For
comparison purpose, hydrated lime is also used instead of fly ash
in Unconfined Compressive Strength tests at predetermined
contents, i.e., 3%, 5%, and 7%. In order to observe
microstructures of samples, Scanning Electron Microscope -
Energy Dispersive X-ray analysis are performed.
The results of the study show that bearing capacity of Elmadag
soft soil can be improved substantially and swell can be reduced
significantly by using Class C fly ash.
|
1119 |
The Stabilization Of A Two Axes Gimbal Of A Roll Stabilized MissileHasturk, Ozgur 01 September 2011 (has links) (PDF)
Nowadays, high portion of tactical missiles use gimbaled seeker. For accurate target tracking, the platform where the gimbal is mounted must be stabilized with respect to the motion of the missile body. Line of sight stabilization is critical for fast and precise tracking and alignment. Although, conventional PID framework solves many stabilization problems, it is reported that many PID feedback loops are poorly tuned. In this thesis, recently introduced robot control method, proxy based sliding mode control, is adopted for the line of sight (LOS) stabilization. Before selecting the proposed method, adaptive neural network sliding mode control and fuzzy control are also implemented for comparative purposes. Experimental and simulation results show a satisfactory response of the proxy based sliding mode controller.
|
1120 |
Protein engineering to explore and improve affinity ligandsLinhult, Martin January 2003 (has links)
<p>In order to produce predictable and robust systems forprotein purification and detection, well characterized, small,folded domains descending from bacterial receptors have beenused. These bacterial receptors, staphylococcal protein A (SPA)and streptococcal protein G (SPG), possess high affinity to IgGand / or HSA. They are composed of repetitive units in whicheach one binds the ligand independently. The domains foldindependently and are very stable. Since the domains also havewellknown three-dimensional structures and do not containcysteine residues, they are very suitable as frameworks forfurther protein engineering.</p><p>Streptococcal protein G (SPG) is a multidomain proteinpresent on the cell surface of<i>Streptococcus</i>. X-ray crystallography has been used todetermine the binding site of the Ig-binding domain. In thisthesis the region responsible for the HSA affinity of ABD3 hasbeen determined by directed mutagenesis followed by functionaland structural analysis. The analysis shows that the HSAbindinginvolves residues mainly in the second α-helix.</p><p>Most protein-based affinity chromatography media are verysensitive towards alkaline treatment, which is the preferredmethod for regeneration and removal of contaminants from thepurification devices in industrial applications. Here, aprotein engineering strategy has been used to improve thetolerance to alkaline conditions of different domains fromprotein G, ABD3 and C2. Amino acids known to be susceptibletowards high pH were substituted for less alkali susceptibleresidues. The new, engineered variants of C2 and ABD shownhigher stability towards alkaline pH. Also, very important forthe potential use as affinity ligands, these mutated variantsretained the secondary structure and the affinity to HSA andIgG, respectively. Moreover, dimerization was performed toinvestigate whether a higher binding capacity could be obtainedby multivalency. For ABD, binding studies showed that divalentligands coupled using non-directed chemistry demonstrated anincreased molar binding capacity compared to monovalentligands. In contrast, equal molar binding capacities wereobserved for both types of ligands when using a directed ligandcoupling chemistry involving the introduction and recruitmentof a unique C-terminal cysteine residue.</p><p>The staphylococcal protein A-derived domain Z is also a wellknown and thoroughly characterized fusion partner widely usedin affinity chromatography systems. This domain is consideredto be relatively tolerant towards alkaline conditions.Nevertheless, it is desirable to further improve the stabilityin order to enable an SPA-based affinity medium to withstandeven longer exposure to the harsh conditions associated withcleaning in place (CIP) procedures. For this purpose adifferent protein engineering strategy was employed. Smallchanges in stability due to the mutations would be difficult toassess. Hence, in order to enable detection of improvementsregarding the alkaline resistance of the Z domain, a by-passmutagenesis strategy was utilized, where a mutated structurallydestabilized variant, Z(F30A) was used as a surrogateframework. All eight asparagines in the domain were exchangedone-by-one. The residues were all shown to have differentimpact on the alkaline tolerance of the domain. By exchangingasparagine 23 for a threonine we were able to remarkablyincrease the stability of the Z(F30A)-domain towards alkalineconditions. Also, when grafting the N23T mutation to the Zscaffold we were able to detect an increased tolerance towardsalkaline treatment compared to the native Z molecule. In allcases, the most sensitive asparagines were found to be locatedin the loops region.</p><p>In summary, the work presented in this thesis shows theusefulness of protein engineering strategies, both to explorethe importance of different amino acids regarding stability andfunctionality and to improve the characteristics of aprotein.</p><p><b>Keywords:</b>binding, affinity, human serum albumin (HSA),albumin-binding domain (ABD), affinity chromatography,deamidation, protein A, stabilization, Z-domain, capacity,protein G, cleaning-in-place (CIP), protein engineering, C2receptor.</p>
|
Page generated in 0.0207 seconds