121 |
Uma comparação da aplicação de métodos computacionais de classificação de dados aplicados ao consumo de cinema no Brasil / A comparison of the application of data classification computational methods to the consumption of film at theaters in BrazilNathalia Nieuwenhoff 13 April 2017 (has links)
As técnicas computacionais de aprendizagem de máquina para classificação ou categorização de dados estão sendo cada vez mais utilizadas no contexto de extração de informações ou padrões em bases de dados volumosas em variadas áreas de aplicação. Em paralelo, a aplicação destes métodos computacionais para identificação de padrões, bem como a classificação de dados relacionados ao consumo dos bens de informação é considerada uma tarefa complexa, visto que tais padrões de decisão do consumo estão relacionados com as preferências dos indivíduos e dependem de uma composição de características individuais, variáveis culturais, econômicas e sociais segregadas e agrupadas, além de ser um tópico pouco explorado no mercado brasileiro. Neste contexto, este trabalho realizou o estudo experimental a partir da aplicação do processo de Descoberta do conhecimento (KDD), o que inclui as etapas de seleção e Mineração de Dados, para um problema de classificação binária, indivíduos brasileiros que consomem e não consomem um bem de informação, filmes em salas de cinema, a partir dos dados obtidos na Pesquisa de Orçamento Familiar (POF) 2008-2009, pelo Instituto Brasileiro de Geografia e Estatística (IBGE). O estudo experimental resultou em uma análise comparativa da aplicação de duas técnicas de aprendizagem de máquina para classificação de dados, baseadas em aprendizado supervisionado, sendo estas Naïve Bayes (NB) e Support Vector Machine (SVM). Inicialmente, a revisão sistemática realizada com o objetivo de identificar estudos relacionados a aplicação de técnicas computacionais de aprendizado de máquina para classificação e identificação de padrões de consumo indica que a utilização destas técnicas neste contexto não é um tópico de pesquisa maduro e desenvolvido, visto que não foi abordado em nenhum dos trabalhos estudados. Os resultados obtidos a partir da análise comparativa realizada entre os algoritmos sugerem que a escolha dos algoritmos de aprendizagem de máquina para Classificação de Dados está diretamente relacionada a fatores como: (i) importância das classes para o problema a ser estudado; (ii) balanceamento entre as classes; (iii) universo de atributos a serem considerados em relação a quantidade e grau de importância destes para o classificador. Adicionalmente, os atributos selecionados pelo algoritmo de seleção de variáveis Information Gain sugerem que a decisão de consumo de cultura, mais especificamente do bem de informação, filmes em cinema, está fortemente relacionada a aspectos dos indivíduos relacionados a renda, nível de educação, bem como suas preferências por bens culturais / Machine learning techniques for data classification or categorization are increasingly being used for extracting information or patterns from volumous databases in various application areas. Simultaneously, the application of these computational methods to identify patterns, as well as data classification related to the consumption of information goods is considered a complex task, since such decision consumption paterns are related to the preferences of individuals and depend on a composition of individual characteristics, cultural, economic and social variables segregated and grouped, as well as being not a topic explored in the Brazilian market. In this context, this study performed an experimental study of application of the Knowledge Discovery (KDD) process, which includes data selection and data mining steps, for a binary classification problem, Brazilian individuals who consume and do not consume a information good, film at theaters in Brazil, from the microdata obtained from the Brazilian Household Budget Survey (POF), 2008-2009, performed by the Brazilian Institute of Geography and Statistics (IBGE). The experimental study resulted in a comparative analysis of the application of two machine-learning techniques for data classification, based on supervised learning, such as Naïve Bayes (NB) and Support Vector Machine (SVM). Initially, a systematic review with the objective of identifying studies related to the application of computational techniques of machine learning to classification and identification of consumption patterns indicates that the use of these techniques in this context is not a mature and developed research topic, since was not studied in any of the papers analyzed. The results obtained from the comparative analysis performed between the algorithms suggest that the choice of the machine learning algorithms for data classification is directly related to factors such as: (i) importance of the classes for the problem to be studied; (ii) balancing between classes; (iii) universe of attributes to be considered in relation to the quantity and degree of importance of these to the classifiers. In addition, the attributes selected by the Information Gain variable selection algorithm suggest that the decision to consume culture, more specifically information good, film at theaters, is directly related to aspects of individuals regarding income, educational level, as well as preferences for cultural goods
|
122 |
Reconnaissance des sons de l’environnement dans un contexte domotique / Environmental sounds recognition in a domotic contextSehili, Mohamed el Amine 05 July 2013 (has links)
Dans beaucoup de pays du monde, on observe une importante augmentation du nombre de personnes âgées vivant seules. Depuis quelques années, un nombre significatif de projets de recherche sur l’assistance aux personnes âgées ont vu le jour. La plupart de ces projets utilisent plusieurs modalités (vidéo, son, détection de chute, etc.) pour surveiller l'activité de la personne et lui permettre de communiquer naturellement avec sa maison "intelligente", et, en cas de danger, lui venir en aide au plus vite. Ce travail a été réalisé dans le cadre du projet ANR VERSO de recherche industrielle, Sweet-Home. Les objectifs du projet sont de proposer un système domotique permettant une interaction naturelle (par commande vocale et tactile) avec la maison, et procurant plus de sécurité à l'habitant par la détection des situations de détresse. Dans ce cadre, l'objectif de ce travail est de proposer des solutions pour la reconnaissance des sons de la vie courante dans un contexte réaliste. La reconnaissance du son fonctionnera en amont d'un système de Reconnaissance Automatique de la Parole. Les performances de celui-ci dépendent donc de la fiabilité de la séparation entre la parole et les autres sons. Par ailleurs, une bonne reconnaissance de certains sons, complétée par d'autres sources informations (détection de présence, détection de chute, etc.) permettrait de bien suivre les activités de la personne et de détecter ainsi les situations de danger. Dans un premier temps, nous nous sommes intéressés aux méthodes en provenance de la Reconnaissance et Vérification du Locuteur. Dans cet esprit, nous avons testé des méthodes basées sur GMM et SVM. Nous avons, en particulier, testé le noyau SVM-GSL (SVM GMM Supervector Linear Kernel) utilisé pour la classification de séquences. SVM-GSL est une combinaison de SVM et GMM et consiste à transformer une séquence de vecteurs de longueur arbitraire en un seul vecteur de très grande taille, appelé Super Vecteur, et utilisé en entrée d'un SVM. Les expérimentations ont été menées en utilisant une base de données créée localement (18 classes de sons, plus de 1000 enregistrements), puis le corpus du projet Sweet-Home, en intégrant notre système dans un système plus complet incluant la détection multi-canaux du son et la reconnaissance de la parole. Ces premières expérimentations ont toutes été réalisées en utilisant un seul type de coefficients acoustiques, les MFCC. Par la suite, nous nous sommes penchés sur l'étude d'autres familles de coefficients en vue d'en évaluer l'utilisabilité en reconnaissance des sons de l'environnement. Notre motivation fut de trouver des représentations plus simples et/ou plus efficaces que les MFCC. En utilisant 15 familles différentes de coefficients, nous avons également expérimenté deux approches pour transformer une séquence de vecteurs en un seul vecteur, à utiliser avec un SVM linéaire. Dans le première approche, on calcule un nombre fixe de coefficients statistiques qui remplaceront toute la séquence de vecteurs. La seconde approche (une des contributions de ce travail) utilise une méthode de discrétisation pour trouver, pour chaque caractéristique d'un vecteur acoustique, les meilleurs points de découpage permettant d'associer une classe donnée à un ou plusieurs intervalles de valeurs. La probabilité de la séquence est estimée par rapport à chaque intervalle. Les probabilités obtenues ainsi sont utilisées pour construire un seul vecteur qui remplacera la séquence de vecteurs acoustiques. Les résultats obtenus montrent que certaines familles de coefficients sont effectivement plus adaptées pour reconnaître certaines classes de sons. En effet, pour la plupart des classes, les meilleurs taux de reconnaissance ont été observés avec une ou plusieurs familles de coefficients différentes des MFCC. Certaines familles sont, de surcroît, moins complexes et comptent une seule caractéristique par fenêtre d'analyse contre 16 caractéristiques pour les MFCC / In many countries around the world, the number of elderly people living alone has been increasing. In the last few years, a significant number of research projects on elderly people monitoring have been launched. Most of them make use of several modalities such as video streams, sound, fall detection and so on, in order to monitor the activities of an elderly person, to supply them with a natural way to communicate with their “smart-home”, and to render assistance in case of an emergency. This work is part of the Industrial Research ANR VERSO project, Sweet-Home. The goals of the project are to propose a domotic system that enables a natural interaction (using touch and voice command) between an elderly person and their house and to provide them a higher safety level through the detection of distress situations. Thus, the goal of this work is to come up with solutions for sound recognition of daily life in a realistic context. Sound recognition will run prior to an Automatic Speech Recognition system. Therefore, the speech recognition’s performances rely on the reliability of the speech/non-speech separation. Furthermore, a good recognition of a few kinds of sounds, complemented by other sources of information (presence detection, fall detection, etc.) could allow for a better monitoring of the person's activities that leads to a better detection of dangerous situations. We first had been interested in methods from the Speaker Recognition and Verification field. As part of this, we have experimented methods based on GMM and SVM. We had particularly tested a Sequence Discriminant SVM kernel called SVM-GSL (SVM GMM Super Vector Linear Kernel). SVM-GSL is a combination of GMM and SVM whose basic idea is to map a sequence of vectors of an arbitrary length into one high dimensional vector called a Super Vector and used as an input of an SVM. Experiments had been carried out using a locally created sound database (containing 18 sound classes for over 1000 records), then using the Sweet-Home project's corpus. Our daily sounds recognition system was integrated into a more complete system that also performs a multi-channel sound detection and speech recognition. These first experiments had all been performed using one kind of acoustical coefficients, MFCC coefficients. Thereafter, we focused on the study of other families of acoustical coefficients. The aim of this study was to assess the usability of other acoustical coefficients for environmental sounds recognition. Our motivation was to find a few representations that are simpler and/or more effective than the MFCC coefficients. Using 15 different acoustical coefficients families, we have also experimented two approaches to map a sequence of vectors into one vector, usable with a linear SVM. The first approach consists of computing a set of a fixed number of statistical coefficients and use them instead of the whole sequence. The second one, which is one of the novel contributions of this work, makes use of a discretization method to find, for each feature within an acoustical vector, the best cut points that associates a given class with one or many intervals of values. The likelihood of the sequence is estimated for each interval. The obtained likelihood values are used to build one single vector that replaces the sequence of acoustical vectors. The obtained results show that a few families of coefficients are actually more appropriate to the recognition of some sound classes. For most sound classes, we noticed that the best recognition performances were obtained with one or many families other than MFCC. Moreover, a number of these families are less complex than MFCC. They are actually a one-feature per frame acoustical families, whereas MFCC coefficients contain 16 features per frame
|
123 |
Classificação automática de gênero musical baseada em entropia e fractais / Automatic music genre classification based on entropy and fractalsAntonio José Homsi Goulart 16 February 2012 (has links)
A classificação automática de gênero musical tem como finalidade o conforto de ouvintes de músicas auxiliando no gerenciamento das coleções de músicas digitais. Existem sistemas que se baseiam em cabeçalhos de metadados (tais como nome de artista, gênero cadastrado, etc.) e também os que extraem parâmetros dos arquivos de música para a realização da tarefa. Enquanto a maioria dos trabalhos do segundo tipo utilizam-se do conteúdo rítmico e tímbrico, este utiliza-se apenas de conceitos da teoria da informação e da geometria de fractais. Entropia, lacunaridade e dimensão do fractal são os parâmetros que treinam os classificadores. Os testes foram realizados com duas coleções criadas para este trabalho e os resultados foram proeminentes / The goal of automatic music genre classification is givingmusic listeners ease and confort when managing digital music databases. Some systems are based on tags of metadata (such as artist name, genre labeled, etc.), while others explore characteristics from the music files to complete the task. While the majority of works of the second type analyse rhytmic, timbric and pitch content, this one explores only information theoretic and fractal geometry concepts. Entropy, fractal dimension and lacunarity are the parameters adopted to train the classifiers. Tests were carried out on two databases assembled by the author. Results were prominent
|
124 |
Méthodes de classifications dynamiques et incrémentales : application à la numérisation cognitive d'images de documents / Incremental and dynamic learning for document image : application for intelligent cognitive scanning of documentsNgo Ho, Anh Khoi 19 March 2015 (has links)
Cette thèse s’intéresse à la problématique de la classification dynamique en environnements stationnaires et non stationnaires, tolérante aux variations de quantités des données d’apprentissage et capable d’ajuster ses modèles selon la variabilité des données entrantes. Pour cela, nous proposons une solution faisant cohabiter des classificateurs one-class SVM indépendants ayant chacun leur propre procédure d’apprentissage incrémentale et par conséquent, ne subissant pas d’influences croisées pouvant émaner de la configuration des modèles des autres classificateurs. L’originalité de notre proposition repose sur l’exploitation des anciennes connaissances conservées dans les modèles de SVM (historique propre à chaque SVM représenté par l’ensemble des vecteurs supports trouvés) et leur combinaison avec les connaissances apportées par les nouvelles données au moment de leur arrivée. Le modèle de classification proposé (mOC-iSVM) sera exploité à travers trois variations exploitant chacune différemment l’historique des modèles. Notre contribution s’inscrit dans un état de l’art ne proposant pas à ce jour de solutions permettant de traiter à la fois la dérive de concepts, l’ajout ou la suppression de concepts, la fusion ou division de concepts, tout en offrant un cadre privilégié d’interactions avec l’utilisateur. Dans le cadre du projet ANR DIGIDOC, notre approche a été appliquée sur plusieurs scénarios de classification de flux d’images pouvant survenir dans des cas réels lors de campagnes de numérisation. Ces scénarios ont permis de valider une exploitation interactive de notre solution de classification incrémentale pour classifier des images arrivant en flux afin d’améliorer la qualité des images numérisées. / This research contributes to the field of dynamic learning and classification in case of stationary and non-stationary environments. The goal of this PhD is to define a new classification framework able to deal with very small learning dataset at the beginning of the process and with abilities to adjust itself according to the variability of the incoming data inside a stream. For that purpose, we propose a solution based on a combination of independent one-class SVM classifiers having each one their own incremental learning procedure. Consequently, each classifier is not sensitive to crossed influences which can emanate from the configuration of the models of the other classifiers. The originality of our proposal comes from the use of the former knowledge kept in the SVM models (represented by all the found support vectors) and its combination with the new data coming incrementally from the stream. The proposed classification model (mOC-iSVM) is exploited through three variations in the way of using the existing models at each step of time. Our contribution states in a state of the art where no solution is proposed today to handle at the same time, the concept drift, the addition or the deletion of concepts, the fusion or division of concepts while offering a privileged solution for interaction with the user. Inside the DIGIDOC project, our approach was applied to several scenarios of classification of images streams which can correspond to real cases in digitalization projects. These different scenarios allow validating an interactive exploitation of our solution of incremental classification to classify images coming in a stream in order to improve the quality of the digitized images.
|
125 |
[en] STOCK MARKET BEHAVIOR PREDICTION USING FINANCIAL NEWS IN PORTUGUESE / [pt] PREDIÇÃO DO COMPORTAMENTO DO MERCADO FINANCEIRO UTILIZANDO NOTÍCIAS EM PORTUGUÊSHERALDO PIMENTA BORGES FILHO 27 August 2015 (has links)
[pt] Um conjunto de teorias financeiras, tais como a hipótese do mercado
eficiente e a teoria do passeio aleatório, afirma ser impossível prever o
futuro do mercado de ações baseado na informação atualmente disponível.
Entretanto, pesquisas recentes têm provado o contrário ao constatar uma
relação entre o conteúdo de uma notícia corrente e o comportamento de um
ativo. Nosso objetivo é projetar e implementar um algoritmo de predição
que utiliza notícias jornalísticas sobre empresas de capital aberto para
prever o comportamento de ações na bolsa de valores. Utilizamos uma
abordagem baseada em aprendizado de máquina para a tarefa de predição
do comportamento de um ativo nas posições de alta, baixa ou neutra,
utilizando informações quantitativas e qualitativas, como notícias sobre o
mercado financeiro. Avaliamos o nosso sistema em um dataset com seis mil
notícias e nossos experimentos apresentam uma acurácia de 68.57 porcento para a
tarefa. / [en] A set of financial theories, such as the eficient market hypothesis and
the theory of random walk, says it is impossible to predict the future of
the stock market based on currently available information. However, recent
research has proven otherwise by finding a relationship between the content
of a news and current behavior of an stock. Our goal is to develop and
implement a prediction algorithm that uses financial news about joint-stock
company to predict the stock s behavior on the stock exchange. We use an
approach based on machine learning for the task of predicting the behavior
of an stock in positions of up, down or neutral, using quantitative and
qualitative information, such as financial. We evaluate our system on a
dataset with six thousand news and our experiments indicate an accuracy
of 68.57 percent for the task.
|
126 |
Monitoramento da cobertura do solo no entorno de hidrelétricas utilizando o classificador SVM (Support Vector Machines). / Land cover monitoring in hydroelectric domain area using Support Vector Machines (SVM) classifier.Rafael Walter de Albuquerque 07 December 2011 (has links)
A classificação de imagens de satélite é muito utilizada para elaborar mapas de cobertura do solo. O objetivo principal deste trabalho consistiu no mapeamento automático da cobertura do solo no entorno da Usina de Lajeado (TO) utilizando-se o classificador SVM. Buscou-se avaliar a dimensão de áreas antropizadas presentes na represa e a acurácia da classificação gerada pelo algoritmo, que foi comparada com a acurácia da classificação obtida pelo tradicional classificador MAXVER. Esta dissertação apresentou sugestões de calibração do algoritmo SVM para a otimização do seu resultado. Verificou-se uma alta acurácia na classificação SVM, que mostrou o entorno da represa hidrelétrica em uma situação ambientalmente favorável. Os resultados obtidos pela classificação SVM foram similares aos obtidos pelo MAXVER, porém este último contextualizou espacialmente as classes de cobertura do solo com uma acurácia considerada um pouco menor. Apesar do bom estado de preservação ambiental apresentado, a represa deve ter seu entorno devidamente monitorado, pois foi diagnosticada uma grande quantidade de incêndios gerados pela população local, sendo que as ferramentas discutidas nesta dissertação auxiliam esta atividade de monitoramento. / Satellite Image Classification are very useful for building land cover maps. The aim of this study consists on an automatic land cover mapping in the domain area of Lajeados dam, at Tocantins state, using the SVM classifier. The aim of this work was to evaluate anthropic dimension areas near the dam and also to verify the algorithms classification accuracy, which was compared to the results of the standard ML (Maximum Likelihood) classifier. This work presents calibration suggestions to the SVM algorithm for optimizing its results. SVM classification presented high accuracy, suggesting a good environmental situation along Lajeados dam region. Classification results comparison between SVM and ML were quite similar, but SVMs spatial contextual mapping areas were slightly better. Although environmental situation of the study area was considered good, monitoring ecosystem is important because a significant quantity of burnt areas was noticed due to local communities activities. This fact emphasized the importance of the tools discussed in this work, which helps environmental monitoring.
|
127 |
Classificação de insetos em milho à granel por meio de análise de vídeos endoscópicos / Insects classification in maize by endoscopic vídeo analysisGeus, André Reis de 10 March 2016 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-06-23T19:10:20Z
No. of bitstreams: 2
Dissertação - André Reis de Geus - 2016.pdf: 8269330 bytes, checksum: 1345e49235c545021c88a7baf696f5c0 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Cláudia Bueno (claudiamoura18@gmail.com) on 2017-07-07T20:25:28Z (GMT) No. of bitstreams: 2
Dissertação - André Reis de Geus - 2016.pdf: 8269330 bytes, checksum: 1345e49235c545021c88a7baf696f5c0 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-07-07T20:25:28Z (GMT). No. of bitstreams: 2
Dissertação - André Reis de Geus - 2016.pdf: 8269330 bytes, checksum: 1345e49235c545021c88a7baf696f5c0 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-03-10 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Insects cause significant losses of stored grains in both quantity and quality. In the scenary,
it is of paramount importance an early identification of insects in grains to take control measures.
Instead of sampling and visual/laboratory analysis of grains, we propose to carry
out the insects identification task automatically, using computational methods to perform
endoscopic video analysis. The videos are recorded inside of grains warehouses by an endoscopic
camera. As the classification process of moving objects in video rely heavily on precise
segmentation of moving objets, we propose a new method of background subtraction and
compared their results with the main methods of the literature according to a recent review.
The main innovation of the background subtractionmethod rely on the binarization process
that uses two thresholds: a global and a local threshold. The binarized results are combined
by adding details of the object obtained by the local threshold in the result of the global threshold.
Experimental results performed through visual analysis of the segmentation results
and using a SVM classifier, suggest that the proposed segmentation method produces more
accurate results than the state-of-art background subtraction methods. / Insetos causam perdas quantitativas e qualitativas significantesemgrãos armazenados. Neste
cenário, é de vital importância uma identificação rápida de insetos em grãos para que sejam
tomadas medidas de controle. Ao invés de coletar amostras de grãos para análise visual/laboratorial,
é proposta a realização desta tarefa de identificação de formaautomática, usando
métodos computacionais para a análise de vídeos endoscópicos. Os vídeos são gravados
dentro de armazéns de grãos usando câmera endoscópica. Como o processo de classificação
de objetos em movimento em vídeo depende fundamentalmente de uma segmentação
de objeto precisa, é proposto um novo método de segmentação por subtração de plano de
fundo e comparado seus resultados com os principais métodos da literatura de acordo com
um estudo de revisão recente. A principal inovação neste método de subtração de plano de
fundo está no processo de binarização que usa dois thresholds: um global e um local. Os
resultados binarizados são combinados pela adição de detalhes do objeto obtido pelo threshold
local no resultado do threshold global. Resultados experimentais, realizados através
de análise visual dos resultados de segmentação e usandoumclassificadorSVMindicamque
o método de segmentação proposto produz melhores resultados que métodos do estado da
arte atual da literatura de subtração de plano de fundo.
|
128 |
Classificação de sinais de eletroencefalograma usando máquinas de vetores suporteChagas, Sandro Luiz das 27 August 2009 (has links)
Made available in DSpace on 2016-03-15T19:38:14Z (GMT). No. of bitstreams: 1
Sandro Luiz das Chagas.pdf: 1694587 bytes, checksum: d10c7a5a95b65289731cab95f9b3478a (MD5)
Previous issue date: 2009-08-27 / Electroencephalogram (EEG) is a clinical method widely used to study brain function and neurological disorders. The EEG is a temporal data series which records the electrical activity of the brain. The EEG monitoring systems create a huge amount of data; with this fact a visual analysis of the EEG is not feasible. Because of this, there is a strong demand for computational methods able to analyze automatically the EEG records and extract useful information to support the diagnostics. Herewith, it is necessary to design a tool to extract the relevant features within the EEG record and to classify the EEG based on these features. Calculation of statistics over wavelet coefficients are being used successfully to extract features from many kinds of temporal data series, including EEG signals. Support Vector Machines (SVM) are machine learning techniques with high generalization ability, and they have been successfully used in classification problems by several researches. This dissertation makes an analysis of the influence of feature vectors based on wavelet coefficients in the classification of EEG signal using different implementations of SVMs. / O eletroencefalograma (EEG) é um exame médico largamente utilizado no estudo da função cerebral e de distúrbios neurológicos. O EEG é uma série temporal que contém os registros de atividade elétrica do cérebro. Um grande volume de dados é gerado pelos sistemas de monitoração de EEG, o que faz com que a análise visual completa destes dados se torne inviável na prática. Com isso, surge uma grande demanda por métodos computacionais capazes de extrair, de forma automática, informação útil para a realização de diagnósticos. Para atender essa demanda, é necessária uma forma de extrair de um sinal de EEG as características relevantes para um diagnóstico e também uma forma de classificar o EEG em função destas características. O cálculo de estatísticas sobre coeficientes wavelet vem sendo empregado com sucesso na extração de características de diversos tipos de séries temporais, inclusive EEG. As máquinas de vetores de suporte (SVM do inglês Support Vector Machines) constituem uma técnica de aprendizado de máquina que possui alta capacidade de generalização e têm sido empregadas com sucesso em problemas de classificação por diversos pesquisadores. Nessa dissertação é feita uma análise do impacto da utilização de vetores de características baseados em coeficientes wavelet na classificação de EEG utilizando diferentes implementações de SVM.
|
129 |
CLASSIFICAÇÃO DE NÓDULOS PULMONARES EM MALIGNO E BENIGNO UTILIZANDO OS ÍNDICES DE DIVERSIDADE DE SHANNON E DE SIMPSON / CLASSIFICATION OF PULMONARY NODULES IN MALIGNANT AND BENIGN USING THE CONTENTS OF DIVERSITY SHANNON AND SIMPSONNascimento, Leonardo Barros 20 April 2012 (has links)
Made available in DSpace on 2016-08-17T14:53:20Z (GMT). No. of bitstreams: 1
dissertacao Leonardo.pdf: 864322 bytes, checksum: 557c6817aff39c2f398ebe22a59ad5c6 (MD5)
Previous issue date: 2012-04-20 / FUNDAÇÃO DE AMPARO À PESQUISA E AO DESENVOLVIMENTO CIENTIFICO E TECNOLÓGICO DO MARANHÃO / Lung cancer is still the leading cause of cancer mortality worldwide, with one of the
lowest survival rates after diagnosis. Therefore, early detection is important to increase the
chances of curing the patient. The diagnosis is more accurate if the specialist has more
information. In view of the above, this work presents a methodology for characterization
about the malignancy or benignity of pulmonary nodules, acting as a second opinion for the
expert. The methodology was applied in two different databases, one with 73 nodes, 26
malignant and 47 benign, and other with 1034 nodes and 517 malignant and 517 benign. The
Diversity Indices of Shannon and Simpson were used as texture descriptors. The features
generated were then subjected to the step of feature selection using the stepwise Discriminant
Analysis. After this stage, they were classified by the Support Vector Machine (SVM)
where we obtained sensitivity of 85.64%, specificity of 97.89% and accuracy of 92.78%. / O câncer de pulmão é ainda a maior causa de mortalidade por câncer em todo mundo,
com uma das menores taxas de sobrevida a partir do diagnóstico. Por isso, sua detecção
precoce é importante para aumentar a chances de cura do paciente, e de quanto mais
informações o médico dispuser, mais preciso será o diagnóstico. Diante do exposto, o
presente trabalho apresenta uma metodologia de caracterização de nódulos pulmonares,
objetivando se tornar uma ferramenta computacional utilizada para sugerir sobre a
malignidade ou benignidade dos mesmos, atuando como uma segunda opinião junto ao
especialista. A metodologia foi aplicada em duas bases de dados diferentes, uma com 73
nódulos, sendo 26 malignos e 47 benignos, e outra com 1034 nódulos sendo 517 malignos e
517 benignos. Os Índices de Diversidade de Shannon e de Simpson foram utilizados como
descritores de textura. As características geradas foram submetidas à etapa de seleção de
características com a utilização da Análise Discriminante stepwise. Após essa etapa foi
realizada a classificação pela Máquina de Vetores de Suporte (MVS) onde foram obtidas
taxas de sensibilidade de 85,64%, especificidade de 97,89% e acurácia de 92,78%.
|
130 |
METODOLOGIA PARA DETECÇÃO AUTOMÁTICA DE NÓDULOS PULMONARES / METHODOLOGY FOR AUTOMATIC DETENTION OF PULMONARY NODULESSousa, João Rodrigo Ferreira da Silva 07 December 2007 (has links)
Made available in DSpace on 2016-08-17T14:53:29Z (GMT). No. of bitstreams: 1
Joao Rodrigo Ferreira.pdf: 1547613 bytes, checksum: a9c7e73154b7e9a72733f9f2e20a55fe (MD5)
Previous issue date: 2007-12-07 / The lung cancer is a disorder with significant prevalence in several countries worldwide. The hard treatment and the fast progress of the disease increase the mortality rates.
The main factor contributing to a successful treatment is an early diagnosis. However possible omissions in the scan analysis can lead to late diagnosis, compromising all the treatment.
In order to present a computational tool aimed at nodules detection, that can be used as a second opinion to the specialist, this master thesis proposes a methodology for nodules detection that is totally automatic, robust and consistent.
The methodology is based on successive refinements for the segmentation of computed tomography images using morphologic techniques to obtain nodule candidates. The false positive reduction is achieved by SVM based on geometric and texture features.
The tests, performed with real scans, indicate the feasibility of the proposed method. In automatic detection performed on 33 cases the methodology reached 95.21% of correctness with 0.42 false positives and 0.15 false negative per scan. / O câncer de pulmão é uma enfermidade com prevalência significativa em diversos países no mundo todo. O difícil tratamento e a progressão rápida da doença fazem com que os índices de mortalidade das pessoas acometidas por este mal sejam muito altos.
O principal fator contribuinte para um tratamento de sucesso, entretanto, é o diagnóstico precoce. Contudo possíveis omissões na análise dos exames podem levar a um diagnóstico tardio, comprometendo todo o tratamento.
Com o intuito de oferecer uma alternativa computacional de auxílio à detecção de nódulos, servindo como uma segunda opinião para o médico, este trabalho propõe uma metodologia totalmente automática, robusta e consistente.
A metodologia é fundamentada em refinamentos sucessivos da segmentação sobre imagens de tomografia computadorizada utilizando técnicas morfológicas para a obtenção de candidatos a nódulo. A redução de falsos positivos é efetivada pelo SVM com base em características geométricas e de textura.
Os testes realizados com exames reais indicam a viabilidade da solução proposta. Na detecção automática realizada sobre 33 casos a metodologia atingiu 95,21% de acerto com uma média de 0,42 falsos positivos e 0,15 falsos negativos por exame.
|
Page generated in 0.0467 seconds