• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasma catalytic process for CO2 methanation / Procédé plasma catalytique pour la méthanation du CO2

Nizio, Magdalena 06 October 2016 (has links)
Combiné à une demande en énergie croissante, les ressources limitées de pétrole et de gaz naturel nous obligent à rechercher des alternatives plus propres et de plus en plus efficaces pour la production d'énergie. L'hydrogène (H2) est considéré comme un vecteur énergétique prometteur. Cependant, il existe plusieurs problèmes liés à l'utilisation de H2, depuis son transport jusqu'à sa distribution. La transformation de la molécule de H2 peut s’effectuer par la synthèse d’un composé contenant du carbone, à savoir du méthane (CH4), offrant ainsi la possibilité d'utiliser le réseau de transport existante. En effet, la réaction de Sabatier, qui est fortement exothermique, implique la réaction du dioxyde de carbone (CO2) et du dihydrogène afin de produire du méthane et de l’eau. Ce procédé, appelé méthanation, représente une approche réalisable contribuant à la réduction des émissions de CO2 dans l'atmosphère, à travers un cycle fermé du carbone impliquant la valorisation du CO2. Cependant, en dessous d’une température de 200 °C, la conversion devient proche de zéro, tandis qu’à des températures plus élevés (>300 °C), des réactions secondaires favorisant la formation du CO et d’H2 apparaissent. C’est une des raisons pour laquelle de nouveaux types de catalyseurs doivent être étudiés dans le but de maximiser la sélectivité du méthane à des basses températures et à pression atmosphérique. Par conséquent, en utilisant des catalyseurs associés aux plasmas DBD, l’activation de la réaction de méthanation peut ainsi être améliorée. Plusieurs catalyseurs contenant du Ni ont donc été synthétisés en utilisant différents oxydes de Ce-Zr en tant que supports, avec un ratio Ce-Zr variable. Les résultats obtenus dans des conditions adiabatiques à basses températures (comprises entre 120 et 150 °C), en présence de catalyseurs activés par plasma, sont prometteurs. La conversion du CO2 en CH4 est d’environ 85 % avec une sélectivité proche de 100 %. En l’absence de catalyseurs activés par plasma, cette même conversion est observée à 350 °C, tandis qu’à basses températures et sans plasma, celle-ci est presque nulle. Ce système à basse consommation d’énergie permet donc de diminuer le coût de production du méthane synthétique avec une durée de vie du catalyseur prolongée. / The limited resources of oil and natural gas, together with an increasing energy demand, forces us to seek more and more efficient and cleaner energy production alternatives. Hydrogen has been recently considered as a promising energy carrier. However, there are several inherent problems to the utilization of H2, from its transportation to its distribution. Transformation of the H2 molecule by fixing into a carbon-containing compound, i.e. CH4, will offer the possibility of using the conventional transportation network. Indeed, the Sabatier reaction, which is highly exothermic, involves the reaction of carbon dioxide and hydrogen gas in order to produce methane and water. This process, called methanation, represents a feasible approach contributing to the reduction of the CO2 emissions in our atmosphere, through a closed carbon cycle involving the valorization of CO2, i.e. from capture. However, below a temperature of 250 °C, the conversion becomes practically close to 0 %, whereas at higher temperatures, i.e., (>300 ºC), the co-existence of secondary reactions favours the formation of CO and H2. This is the reason why new catalysts and process conditions are continuously being investigated in order to maximize the methane selectivity at low reaction temperatures at atmospheric pressure. Therefore, by using catalysts combined to Dielectric Barrier Discharge plasmas (DBD), the activation of the methanation reaction can be enhanced and overcome the drawbacks of existing conventional processes. Several Ni-containing catalysts were prepared using various ceria-zirconia oxides as supports, with different Ce/Zr ratios. The results obtained in the adiabatic conditions at low temperatures (ranging between 100-150 °C), in the presence of catalysts activated by plasma, are promising. Indeed, the conversion of CO2 to CH4 is about 85 % with a selectivity close to 100 %. The same conversion in the absence of the plasma activation of the catalyst is observed at 350 °C. At low temperatures (120-150 °C) and without plasma, conversion is almost close to zero. This low consumption energy system helps reduce the cost of production of synthetic methane together with an extended life of the catalyst.
2

The technical potential of renewable natural gas (RNG) in the United States, and the economic potential of methanation-derived RNG in Texas

Ólafsson, Brynjólfur Víðir 03 February 2015 (has links)
Renewable Natural Gas (RNG) is a low-carbon fuel source that is derived from the anaerobic digestion (AD) or thermal gasification (TG) of biomass, or produced using renewable electricity through the methanation of carbon dioxide. This thesis uses a thermodynamic balance to determine the total technical potential of RNG in the United States, as well as the future technical potential of methanation-derived RNG based on growth curves for renewable electricity. Furthermore, this work establishes an analytic decision-making framework for determining on a rolling basis, from an economic standpoint, whether to sell electricity directly to the grid, or produce and sell methanation-derived RNG. This framework is used to establish the economic potential of RNG, based on Texas wind resources. This work details the formulation of a model that determines which production option generates more marginal profit, based on fluctuating electricity and gas prices. The model also aggregates the total amount of electricity and RNG sold, assuming that the main objective is to maximize the marginal profit of integrated wind- and methanation facilities. This work concludes that the annual technical potential of methanation-derived RNG nationally was 1.03 Quads in 2011. The technical potential of biomass-derived RNG was 9.5 Quads. Thus, the total 2011 technical potential of RNG in the United States was 10.5 Quads, or equal to roughly 43% of the total US consumption of natural gas that year. Assuming a constant, 80% electrolyser efficiency, the technical potential of methanation-derived RNG is expected to rise at an average rate of 1.4% per year, following growth curves for renewable power, until the year 2040, when it will be 1.54 Quads. The 2011 economic potential of methanation-derived RNG in Texas was between 2.06×10⁷ MMBTU and 3.19×10⁷ MMBTU, or between 19.4% and 30.1% of the corresponding annual technical potential. Furthermore, the total marginal profit increase from introducing the option of producing and selling methanation-derived RNG was around $366 million, given a ‘best case scenario’ for the state of Texas. / text
3

EXPERIMENTAL AND KINETIC ANALYSIS OF CATALYTIC GASIFICATION

Adhikari, Shreya 29 July 2014 (has links)
No description available.
4

Paroplynová turbína pro akumulaci energie / Steam-gas turbine for energy storage

Staněk, Štěpán January 2020 (has links)
Master thesis discusses the growing need of electric energy storage and its effectivity and capacity. It describes an overview of possible technologies with their advantages and disadvantages. Greater attention is paid to the storage of energy in gas, so-called Power to Gas, which combines the electrolytic production of hydrogen from water and the Sabatier reaction to produce synthetic methane. This technology is introduced in the so-called SIT Brno cycle of Siemens Industrial Turbomachinery company. The main part of the thesis is focused on the description of this cycle and on the calculation of the steam-gas turbine (high-pressure and low pressure module). This thesis describes the methodology of turbine calculation and the composition of the steam gas mixture after combustion of methane. The carbon dioxide formed by combustion in the steam-gas mixture generator was replaced by steam. Part of the diploma thesis are drawings of cross-section of individual turbine modules.
5

Novel heterogenous catalysts for the selective hydrogenation of CO2 to CH4

Machado Da Silva, Raul Bruno 16 January 2025 (has links)
[ES] El cambio climático es uno de los mayores desafíos del siglo XXI, requiriendo tecnologías que usen energías renovables y fuentes alternativas de carbono para generar y almacenar combustibles. Una solución es la tecnología Power-to-Gas (P2G), donde el H2, producido por electrólisis con energías renovables, reduce el CO2 para convertirlo en CH4, obteniendo biometano o gas natural sintético (GNS) según su pureza. Este combustible puede distribuirse a través de gasoductos existentes. La hidrogenación selectiva de CO2 a CH4, conocida como reacción de Sabatier o metanación de CO2, es la vía más eficiente para producir SNG en aplicaciones P2G. Sin embargo, lograr una metanación rentable requiere catalizadores activos que operen bajo condiciones moderadas de forma duradera. Para ello, se han investigado catalizadores de Ni soportados en diferentes materiales, caracterizados y probados en diversas condiciones para optimizar su rendimiento. El Capítulo 4 se centra en catalizadores soportados en materiales zeolíticos, ferrierita y su forma deslaminada correspondiente, ITQ-6, para evaluar el efecto de la deslaminación y la relación Si/Al. Los catalizadores basados en ITQ-6 presentaron una fase Ni0 más dispersa, con un tamaño óptimo de las nanopartículas de Ni entre 6 y 20 nm. Los catalizadores de la ITQ-6 exhibieron mayores valores de conversión de CO2 y TOFs, atribuibles a la mejor dispersión de la fase Ni0, y a una mayor concentración de grupos -OH superficiales. Además, los catalizadores con Si/Al = 30 exhibieron los mayores valores de conversión de CO2 y TOF, debido a la presencia de grupos Si-(OH)-Al, que incrementaron su capacidad de captura de CO2. El Capítulo 5 se centra en catalizadores basados en óxidos de La y Al. Los catalizadores basados en LaAlO3 exhibieron un rendimiento superior en comparación con los óxidos individuales, debido a una mayor concentración de centros básicos de fortaleza moderada. Los resultados de IR operando con resolución temporal revelaron que estos centros están involucrados en la formación de carbonatos monodentados, que son intermediarios activos en la reducción de CO2 a CH4. El Capítulo 6 presenta el estudio de catalizadores preparados sobre sepiolita y el efecto promotor del Ce en la reacción de metanación. Un catalizador con 10% de Ce en peso exhibió los valores óptimos de rendimiento de CH4 a bajas temperaturas, lo que se atribuyó al efecto del Ce sobre el aumento de la dispersión de la fase Ni0 para obtener nanopartículas con un tamaño medio de 6 nm, tamaño óptimo para alcanzar un buen comportamiento catalítico, así como de favorecer un incremento en la concentración de centros básicos de fortaleza moderada. Los estudios de IR operando resueltos en el tiempo revelaron que los catalizadores que contienen Ce presentaban un mecanismo mixto disociativo-asociativo. La adición de Ce condujo a la formación de especies intermedias participantes, como carbonatos monodentados y formiatos que explican estás diferencias mecanísticas. En el Capítulo 7, las mejores formulaciones catalíticas han sido estudiadas en para metanación de biogás simulado, es decir, se llevó a cabo la hidrogenación selectiva de CO2 en presencia del CH4 presente en el propio biogás. Entre todos los catalizadores probados, el soportado en sepiolita, con 15% en peso de Ni y 10% en peso de Ce (15Ni-10Ce-Sep), presentó los mejores resultados, demostrando buena estabilidad y minimizando la formación de coque. Este resultado se atribuyó al efecto del Ce de optimizar la dispersión de Ni0, aumentar la concentración de centros básicos de fortaleza moderada y favorecer la eliminación del coque por oxidación. Considerando el biogás simulado (mezcla de CH4 y CO2), las pruebas con el catalizador 15Ni-10Ce-Sep permitieron obtener una corriente de biometano (94.1% CH4/5.9% CO2), con una tasa de formación de CH4 de 1211,0 mL CH4 h-1. / [CA] El canvi climàtic és un dels majors desafiaments del segle XXI, requerint tecnologies que utilitzen energies renovables i fonts alternatives de carboni per a generar i emmagatzemar combustibles. Una solució és la tecnologia Power-to-Gas (P2G), on l'H2, produït per electròlisi amb energies renovables, redueix el CO2 per a convertir-lo en CH2, obtenint biometà o gas natural sintètic (GNS) segons la seua puresa. Aquest combustible pot distribuir-se a través de gasoductes existents. La hidrogenació selectiva de CO2 a CH2, coneguda com a reacció de Sabatier o metanació de CO2, és la via més eficient per a produir GNS en aplicacions P2G. No obstant això, aconseguir una metanació rendible requereix catalitzadors actius que operen en condicions moderades de forma duradora. Per a això, s'han investigat catalitzadors de Ni suportats en diferents materials, caracteritzats i provats en diverses condicions per a optimitzar el seu rendiment. El Capítol 4 se centra en catalitzadors suportats en materials zeolítics, ferrierita i la seua forma deslaminada corresponent, ITQ-6, per a avaluar l'efecte de la deslaminació i la relació Si/Al. Els catalitzadors basats en ITQ-6 van presentar una fase Ni2 més dispersa, amb una grandària òptima de les nanopartícules de Ni entre 6 i 20 nm. Els catalitzadors d'ITQ-6 van mostrar majors valors de conversió de CO2 i TOFs, atribuïbles a la millor dispersió de la fase Ni2 i a una major concentració de grups -OH superficials. A més, els catalitzadors amb Si/Al = 30 van presentar els majors valors de conversió de CO2 i TOF, a causa de la presència de grups Si-(OH)-Al, que van incrementar la seua capacitat de captura de CO2. El Capítol 5 se centra en catalitzadors basats en òxids de La i Al. Els catalitzadors basats en LaAlO2 van mostrar un rendiment superior en comparació amb els òxids individuals, a causa d'una major concentració de centres bàsics de fortalesa moderada. Els resultats d'IR operant amb resolució temporal van revelar que aquests centres estan involucrats en la formació de carbonats monodentats, que són intermediaris actius en la reducció de CO2 a CH2. El Capítol 6 presenta l'estudi de catalitzadors preparats sobre sepiolita i l'efecte promotor del Ce en la reacció de metanació. Un catalitzador amb 10% de Ce en pes va presentar els valors òptims de rendiment de CH4 a baixes temperatures, la qual cosa s'atribueix a l'efecte del Ce sobre l'augment de la dispersió de la fase Ni0 per a obtindre nanopartícules amb una grandària mitjana de 6 nm, grandària òptima per a aconseguir un bon comportament catalític, així com a afavorir un increment en la concentració de centres bàsics de fortalesa moderada. Els estudis d'IR operant resolts en el temps van revelar que els catalitzadors que contenen Ce presentaven un mecanisme mixt dissociatiu-associatiu. L'addició de Ce va conduir a la formació d'espècies intermèdies participants, com ara carbonats monodentats i formiats que expliquen aquestes diferències mecanístiques. En el Capítol 7, les millors formulacions catalítiques han sigut estudiades per a la metanació de biogàs simulat, és a dir, es va dur a terme la hidrogenació selectiva de CO2 en presència del CH4 present en el mateix biogàs. Entre tots els catalitzadors provats, el suportat en sepiolita, amb 15% en pes de Ni i 10% en pes de Ce (15Ni-10Ce-Sep), va presentar els millors resultats, demostrant bona estabilitat i minimitzant la formació de coc. Aquest resultat s'atribueix a l'efecte del Ce d'optimitzar la dispersió de Ni2, augmentar la concentració de centres bàsics de fortalesa moderada i afavorir l'eliminació del coc per oxidació. Considerant el biogàs simulat (mescla de CH2 i CO2), les proves amb el catalitzador 15Ni-10Ce-Sep van permetre obtindre un corrent de biometà (94,1% CH4 /5,9% CO2), amb una taxa de formació de CH4 de 1211,0 mL CH4 h-1. / [EN] Climate change, with its broad social impacts, is a critical 21st-century challenge. Addressing it requires technologies that use renewable energy and replace traditional carbon sources for fuel production and storage. Power-to-Gas (P2G) technology meets both goals by using H2, produced via renewable energy-driven electrolysis, to reduce CO2 into CH4. This fuel, as biomethane or synthetic natural gas (SNG), can be distributed through existing pipelines. The Sabatier reaction, or CO2 methanation, is the most competitive process for producing SNG via P2G. However, developing cost-efficient technology remains a challenge, necessitating catalysts that stay active under mild conditions for extended periods. To address this, Ni-based catalysts supported on three material families were studied, characterized through various techniques, and tested under different conditions to assess their performance. Chapter 4 is focused on catalysts supported on zeolitic materials, comparing ferrierite and its delaminated counterpart, ITQ-6, to evaluate the effect of the delamination and Si/Al ratio. ITQ-6-based catalysts exhibited a more dispersed Ni0 phase, presenting Ni NPs with the optimum size (6-20 nm) for catalytic performance. This had a consequence on the ITQ-6-based catalysts exhibiting higher CO2 conversion and TOF values attributed to the better dispersion of the Ni0 phase, and to a higher concentration of surface -OH groups. Regarding the effect of the Si/Al ratio, Si/Al = 30 catalysts exhibited higher CO2 conversion and TOF values than the pure Si/Al = ¿, which was attributed to the presence of Si-(OH)-Al groups, which increased their CO2 uptake. Chapter 5 is centered on oxide-based catalysts to evaluate the effect of the mixed oxide synergy on the CO2 methanation reaction. LaAlO3-based catalysts exhibited superior performance compared to the individual oxides, which was attributed to a higher concentration of moderate basic sites. Time-resolved operando IR results revealed that these sites are involved in the formation of monodentate carbonates, which are participating intermediates in the reduction of CO2 to CH4. Chapter 6 is focused on catalysts prepared over the porous phyllosilicate sepiolite and the effect of Ce addition as a promoter. A catalyst with 10% wt. Ce exhibited the optimum CH4 yield values at lower temperatures. This was attributed to the Ce effect to increase the dispersion of the Ni0 phase to obtain NPs with the optimum size (~ 6 nm) for catalytic performance and improve the concentration of moderate basic sites. Time-resolved operando IR measurements revealed that Ce-containing catalysts exhibited a mixed dissociative-associative mechanism, differently from the Ce-free one, which only exhibited the dissociative one. The Ce addition led to the formation of monodentate carbonate and formate, which were identified as participating intermediate species. Chapter 7 is focused on applying catalytic technologies to the biogas upgrade using the selective hydrogenation of CO2 to CH4. The catalysts with optimum Ni loading from each chapter were submitted to studies with different WHSV and stability tests with a sweetened synthetic sample biogas sample. Among all the catalysts tested, the one supported on sepiolite, with 15% wt Ni and 10 % wt. Ce, 15Ni-10Ce-Sep, exhibited the best performance, demonstrating good stability in conversion values throughout the experiment while minimizing coke formation. This was attributed to the effect of Ce to optimize the Ni0 dispersion, increase the concentration of moderate basic sites, and favor the elimination of coke via oxidation. Considering the CH4 and CO2 mixture, tests with 15Ni-10Ce-Sep catalysts upgraded a biogas mixture (60% CH4:40% CO2) to biomethane (94.1% CH4/5.9% CO2) with a CH4 rate formation of 1211.0 mL CH4 h-1. / The funding provided by the LaCaixa InPhiNIT Predoctoral Fellowship (ID 100010434), code LCF/BQ/DI19/11730019 for accomplishing this PhD project is acknowledged. / Machado Da Silva, RB. (2024). Novel heterogenous catalysts for the selective hydrogenation of CO2 to CH4 [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/214024

Page generated in 0.0895 seconds