Spelling suggestions: "subject:"saccades"" "subject:"scaccades""
41 |
Continuité perceptive autour des saccades et des clignements des yeux : rôle des mécanismes rétiniens et extra-rétiniens / Perceptual continuity around saccades and blinks : involvement of retinal and extra-retinal mechanismsDuyck, Marianne 29 November 2016 (has links)
L'entrée visuelle rétinienne est discontinue. D'une part les saccades causent un énorme mouvement de l'image sur la rétine 3 à 4 fois par seconde, qui devrait résulter en un floutage des hautes fréquences spatiales et une forte impression de mouvement. D'autre part, les clignements des yeux induisent une diminution temporaire drastique de la luminance toutes les 3 à 4 secondes. Dans des conditions de vision écologiques, ces conséquences visuelles des saccades et des clignements des yeux ne sont pas consciemment perçues et le monde extérieur semble continu et net : deux phénomènes que l'on peut désigner sous le terme d'omission saccadique et d'omission des clignements des yeux. Dans cette thèse, nous avons voulu mieux comprendre comment le système visuel s'accommode de ces interruptions et quels sont les mécanismes qui contribuent à la continuité perceptive autour des saccades et des clignements des yeux. Deux principaux éléments pourraient contribuer à ces omissions : l'entrée visuelle elle-même et un mécanisme extra-rétinien qui informerait le cerveau de l'interruption à venir qui agirait en modifiant le traitement de l'information autour des saccades et des clignements des yeux. Dans une première série d'expériences, nous avons étudié les caractéristiques du masquage du smear saccadique, c'est à dire dans quelle mesure la présence d'images pré et post saccadiques nettes permet de rendre compte de l'omission du smear saccadique. Plus précisément, nous avons élaboré une méthode de mesure objective du masquage du smear et examiné son étendue spatiale et son origine périphérique ou centrale. A l'aide de cette nouvelle méthode, nous avons répliqué les résultats de masquage du smear et mis en évidence que ce masquage a lieu après le site d'interaction binoculaire et résiste à des séparations spatiales entre smear et masque jusqu'à 6 deg. Dans une deuxième étude nous avons comparé la sensibilité à des réseaux sinusoïdaux de basse fréquence spatiale autour des saccades et en fixation lorsque l'entrée visuelle simule les conséquences visuelles des saccades. De plus, nous avons cherché à établir si la plus importante diminution de la sensibilité observée pour de vraies saccades en comparaison des saccades simulées peut être expliquée par les propriétés cinématiques des mouvements oculaires. L'objectif de la troisième étude était de déterminer si le masquage est suffisant pour rendre compte de l'absence de percept de mouvement autour des saccades. Pour ce faire, nous avons présenté en fixation, un stimulus dont le contenu fréquentiel est similaire à celui des scènes naturelles. Ce stimulus était présenté en mouvement avec un profil similaire à celui d'une saccade. Il pouvait être précédé et suivi de l'image statique avant et après le mouvement. Les résultats indiquent que l'amplitude du mouvement perçu diminue considérablement en présence des masques, sans toutefois annuler totalement tout percept de mouvement pour des longues durées de masques. Dans une dernière série d'études nous nous sommes intéressés à la perception de la durée autour des clignements des yeux. Dans la première expérience nous avons quantifié la contribution de la durée d'un clignement des yeux à la durée d'une période d'obscurité plus longue et dans la seconde expérience, nous avons étudié la perception de la durée d'un objet interrompu ou non par un clignement des yeux. Les résultats de ces deux expériences suggèrent l'implication d'un mécanisme extra-rétinien qui supprime la durée perçue de la période d'obscurité causée par les clignements des yeux mais pas la durée des objets visuels chevauchés par le clignement. Pris dans leur ensemble ces résultats précisent notre compréhension des contributions relatives des mécanismes rétiniens et extra-rétiniens à l'omission saccadique et l'omission des clignements des yeux. / The retinal input is discontinuous. On the one hand saccades, that occur 3-4 times a minute, cause a huge motion of the image on the retina that should result in smearing of the high frequencies of the image and perceived motion. On the other hand eye blinks induce drastic transient decreases in luminance every 3-4 seconds. Under real-world conditions, those visual consequences of saccades and blinks are barely noticed and the world appears continuous and sharp: two phenomena that can be referred to as saccadic and blink omission. In this thesis we were interested in understanding how the visual system deals with these interruptions and which mechanisms contribute to perceived continuity around saccades and blinks. Two main elements could contribute to those omissions: the visual input itself and an extra-retinal mechanism informing the brain of the impending interruption that would affect information processing around saccades and blinks. In a first series of experiments we studied the characteristics of masking of the saccadic smear, the extent to which clear and still pre- and post-saccadic images are responsible for the perceptual omission of saccadic smear. In particular, we designed an objective method to measure smear masking and studied its spatial extent and whether it is of peripheral or central origin. We replicated previous results of saccadic masking with this new method and found that smear masking seems to take place after the site of binocular interaction and survives separations between smear and mask as much as 6 deg. In a second study we compared sensitivity to low-frequency gratings around saccades and in fixation when the visual input simulates the visual consequences of saccades. Moreover we tried to determine whether the greater decrease in sensitivity around real, as compared to simulated, saccades that we found could be accounted for by the cinematic properties of the eye movement. The goal of the third study was to determine if masking was sufficient to explain the lack of perceived motion during saccades. To do that we presented, during fixation, a natural scene-like stimulus moving at saccadic speeds that could be preceded and followed by the initial or final static image. Results indicate that the amplitude of perceived motion considerably decreased in the presence of pre- and post-masks, even though motion was still perceived for long mask durations. In a final series of studies, we probed duration perception around blinks. In a first experiment we quantified the contribution of the duration of a blink to a longer period of darkness and in a second experiment we tested the perceived duration of an object interrupted or not by a blink. Results suggest the involvement of an extra-retinal mechanism that suppresses the perceived duration of the darkness caused by the blink, but not the duration of visual objects that straddle the blink. Taken together these results refine our understanding of the relative contributions of retinal and extra-retinal mechanisms to saccadic and blink omission.
|
42 |
The influence of socio-biological cues on saccadic orientingGregory, Nicola Jean January 2011 (has links)
Previous research has suggested that viewing of another’s averted eye gaze causes automatic orienting of attention and eye movements in observers due to the importance of eye gaze for effective social interaction. Other types of visual cues with no social or biological relevance, such as arrows, are claimed not to produce such a direct effect on orienting behaviour. The finding that processing of eye gaze is reduced in individuals with Autistic Spectrum Disorders as well as following damage to the orbitofrontal cortex of the brain, suggests that gaze processing is indeed critical for effective social behaviour and therefore eye gaze may constitute a “special” directional cue. This thesis tested these ideas by examining the influence of socio-biological (eye gaze and finger pointing) and non-social cues (arrows and words) on eye movement responses in both healthy control participants and those with damage to the frontal lobes of the brain. It further investigated the relationship between orienting to gaze and arrow cues and autistic traits in a healthy population. Important differences between the effects of socio-biological and non-social cues were found on saccadic eye movements. Although in the pro-saccade tasks, arrow cues caused a similar facilitation of responses in the cued direction as eye gaze and pointing cues, in the anti-saccade tasks (in which participants have to respond away from the location of a peripheral onset), arrows had a greatly reduced effect on oculomotor programming relative to the biologically relevant cues. Importantly, although the socio-biological cues continued to influence saccadic responses, the facilitation was in the opposite direction to the cues. This finding suggests that the cues were being processed within the same "anti-response" task set (i.e. "go opposite") as the target stimulus. Word cues had almost no effects on saccadic orienting in either pro- or anti-saccade tasks. Schematicised eye gaze cues had a smaller magnitude effect than photographic gaze cues suggesting that ecological validity ("biological-ness") is an important factor in influencing oculomotor responses to social cues. No relationship was found between autistic traits and orienting to gaze or arrow cues in a large sample of males. However, findings from the neurological patients point to a possible double-dissociation between the neural mechanisms subserving processing of socio-biological and non-social cues, with the former reliant on the orbitofrontal cortex, and the latter on lateral frontal cortex. Taken together, these results suggest that biologically relevant cues have privileged access to the oculomotor system. The findings are interpreted in terms of a neurocognitive model of saccadic orienting to socio-biological and non-social cues, and an extension to an existing model of saccade generation is proposed. Finally, limitations of the research, its wider impact and directions for future work are discussed.
|
43 |
Attention shift and remapping across saccadesYao, Tao 19 December 2016 (has links)
No description available.
|
44 |
Optimisation and computational methods to model the oculomotor system with focus on nystagmusAvramidis, Eleftherios January 2015 (has links)
Infantile nystagmus is a condition that causes involuntary, bilateral and conjugate oscillations of the eyes, which are predominately restricted to the horizontal plane. In order to investigate the cause of nystagmus, computational models and nonlinear dynamics techniques have been used to model and analyse the oculomotor system. Computational models are important in making predictions and creating a quantitative framework for the analysis of the oculomotor system. Parameter estimation is a critical step in the construction and analysis of these models. A preliminary parameter estimation of a nonlinear dynamics model proposed by Broomhead et al. [1] has been shown to be able to simulate both normal rapid eye movements (i.e. saccades) and nystagmus oscillations. The application of nonlinear analysis to experimental jerk nystagmus recordings, has shown that the local dimensions number of the oscillation varies across the phase angle of the nystagmus cycle. It has been hypothesised that this is due to the impact of signal dependent noise (SDN) on the neural commands in the oculomotor system. The main aims of this study were: (i) to develop parameter estimation methods for the Broomhead et al. [1] model in order to explore its predictive capacity by fitting it to experimental recordings of nystagmus waveforms and saccades; (ii) to develop a stochastic oculomotor model and examine the hypothesis that noise on the neural commands could be the cause of the behavioural characteristics measured from experimental nystagmus time series using nonlinear analysis techniques. In this work, two parameter estimation methods were developed, one for fitting the model to the experimental nystagmus waveforms and one to saccades. By using the former method, we successfully fitted the model to experimental nystagmus waveforms. This fit allowed to find the specific parameter values that set the model to generate these waveforms. The types of the waveforms that we successfully fitted were asymmetric pseudo-cycloid, jerk and jerk with extended foveation. The fit of other types of nystagmus waveforms were not examined in this work. Moreover, the results showed which waveforms the model can generate almost perfectly and the waveform characteristics of a number of jerk waveforms which it cannot exactly generate. These characteristics were on a specific type of jerk nystagmus waveforms with a very extreme fast phase. The latter parameter estimation method allowed us to explore whether the model can generate horizontal saccades of different amplitudes with the same behaviour as observed experimentally. The results suggest that the model can generate the experimental saccadic velocity profiles of different saccadic amplitudes. However, the results show that best fittings of the model to the experimental data are when different model parameter values were used for different saccadic amplitude. Our parameter estimation methods are based on multi-objective genetic algorithms (MOGA), which have the advantage of optimising biological models with a multi-objective, high-dimensional and complex search space. However, the integration of these models, for a wide range of parameter combinations, is very computationally intensive for a single central processing unit (CPU). To overcome this obstacle, we accelerated the parameter estimation method by utilising the parallel capabilities of a graphics processing unit (GPU). Depending of the GPU model, this could provide a speedup of 30 compared to a midrange CPU. The stochastic model that we developed is based on the Broomhead et al. [1] model, with signal dependent noise (SDN) and constant noise (CN) added to the neural commands. We fitted the stochastic model to saccades and jerk nystagmus waveforms. It was found that SDN and CN can cause similar variability to the local dimensions number of the oscillation as found in the experimental jerk nystagmus waveforms and in the case of saccade generation the saccadic variability recorded experimentally. However, there are small differences in the simulated behaviour compared to the nystagmus experimental data. We hypothesise that these could be caused by the inability of the model to simulate exactly key jerk waveform characteristics. Moreover, the differences between the simulations and the experimental nystagmus waveforms indicate that the proposed model requires further expansion, and this could include other oculomotor subsystem(s).
|
45 |
Visual working memory and saccadic eye movementsNotice, Keisha Joy January 2013 (has links)
Saccadic eye movements, produced by the oculomotor system, are used to bring salient information in line with the high resolution fovea. It has been suggested that visual working memory, the cognitive system that temporarily stores and manipulates visual information (Baddeley & Hitch, 1974), is utilised by the oculomotor system in order to maintain saccade programmes across temporal delays (Belopolsky & Theeuwes, 2011). Saccadic eye movements have been found to deviate away from information stored in visual working memory (Theeuwes and colleagues, 2005, 2006). Saccadic deviation away from presented visual stimuli has been associated with top-down suppression (McSorley, Haggard, & Walker, 2006). This thesis examines the extent to which saccade trajectories are influenced by information held in visual working memory. Through a series of experiments behavioural memory data and saccade trajectory data were explored and evidence for visual working memory-oculomotor interaction was found. Other findings included specific interactions with the oculomotor system for the dorsal and ventral pathways as well as evidence for both bottom-up and top-down processing. Evidence of further oculomotor interaction with manual cognitive mechanisms was also illustrated, suggesting that visual working memory does not uniquely interact with the oculomotor system to preserve saccade programmes. The clinical and theoretical implications of this thesis are explored. It is proposed that the oculomotor system may interact with a variety of sensory systems to inform accurate and efficient visual processing.
|
46 |
Modèle biomimétique à accumulateurs de la boucle Colliculo-Basale pour la sélection subcorticale des cibles des saccades oculaires / Biomimetic race model of the Tecto-Basal loop for the subcortical selection of ocular saccades targetsThurat, Charles 16 June 2014 (has links)
Le Colliculus Supérieur (SC) est bien connu pour son rôle dans la génération des saccades oculaires. Sa connectivité réciproque avec les Ganglions de la Base (BG) a récemment été mise en évidence, ainsi que son implication active dans les processus de sélection saccadique. Indépendamment du rôle des BG dans la sélection en général, les hypothèses traditionnelles suggèrent que la sélection au sein du SC résulte d'inhibitions latérales réciproques. Notre modèle propose de développer une autre hypothèse, dans laquelle les BG jouent un rôle important pour la sélection des cibles des saccades par un circuit purement sous-cortical SC-BG. En partant du constat que les profils d'activités des populations neuronales du SC peuvent être assimilés à ceux des neurones accumulateurs stochastiques des modèles phénoménologiques de sélection par course, ce nouveau modèle propose que la sélection observée dans le SC résulte non pas d'interactions latérales dans le SC, mais d'un processus de course vers un seuil de sélection dans les couches colliculaires intermédiaires, seuil dynamiquement déterminé par une désinhibition sélective opérée par les BG dans le cadre d'une boucle de rétrocontrôle double des BG vers le SC. Ce modèle reproduit divers profils d'activité neuronaux observés in-vivo, ainsi que les profils de sélection de plusieurs tâches expérimentales relatives à la discrimination entre de nombreux stimuli similaires. Son neuromimétisme lui permet de proposer diverses prédictions sur les substrats neurologiques de ses composants, et les substrats neurologiques de divers phénomènes particuliers de sélection comme les saccades moyennes ou le remote distractor effect. / The Superior Colliculus (SC) is well-known for its role in the generation of ocular saccades. Its reciprocal connectivity with the Basal Ganglia (BG) has recently been highligted, as well as its active involvement in the saccadic selection processes. Yet, the most common hypothesis explaining its role in saccade target selection neglect the potential implication of the BG and focus on unproven networks of lateral reciprocal inhibitions within the SC. We propose a model based on a the SC-BG loop hypothesis, in the framework of a purely subcortical saccade selection process Since the activity profiles of specific SC neurons populations can be seen as equivalent to the stochastic accumulators of the phenomelogical race models, we propose that the selection operated bythe SC is based not on lateral inhibitions within its maps, but on a race to a selection threshold in the intermediate layers of the SC, the threshold being dynamically set by the selective disinhibition of the SC maps by a double closed loops with the BG. Our model is able to reproduce various in-vivo neuronal activity profiles, as well as the selection distributions observed in various experimental setups involving the discrimination between numerous identical stimuli. Our model's neuromimetism level allows us to propose predictions about the neuronal substrates of the model's components, as well as the substrates for various selection phenomenons such as average saccades and the remote distractor effect.
|
47 |
A influência do ruído ambiental nos movimentos sacádicos, na atenção concentrada e na leitura de crianças de 9 e 10 anosCarmo, Michele Picanço do 30 August 2016 (has links)
Submitted by Marlene Aparecida de Souza Cardozo (mcardozo@pucsp.br) on 2017-01-10T10:58:36Z
No. of bitstreams: 1
Michele Picanço do Carmo.pdf: 2127171 bytes, checksum: f3e25ebfe1576eea3f63dbba02d6b485 (MD5) / Made available in DSpace on 2017-01-10T10:58:36Z (GMT). No. of bitstreams: 1
Michele Picanço do Carmo.pdf: 2127171 bytes, checksum: f3e25ebfe1576eea3f63dbba02d6b485 (MD5)
Previous issue date: 2016-08-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Introduction: Noise can adversely affect cognitive performance, influencing in cognition, short-term memory, attention, executive functions, reading and writing, impairing cognitive performance and learning in children school age. Brazilian schools have noise levels above the recommended for acoustic comfort, which can interfere with the learning process. Objective: To investigate the effect of environmental noise in saccades, in concentrated and reading in a group of children with reading and writing alterations attention. Methods: We evaluated 42 children aged 9 to 10 years no hearing impairment, visual or reading and writing. Saccades were evaluated by Electronystagmography; attention was measured by Attention Test for Cancellation and the reading was assessed using Prova Brasil text. The tests were performed in the situation of silence and background noise of 76 dB (A) and 95 dB (A), previously measured in the classroom. Results: Noise caused no significant effect on speed, accuracy and latency of saccadic movements as well as the number of errors, successes, omissions and absences in attention test. In reading test were found differences in speed in the presence of noise. When exposed to 76 dB (A) and 95 dB (A) children read fewer words per minute than in silence. Conclusion: No significant noise effect in the tests, may be due to early exposure to noise, causing a habituation to noise. One can also think that the type of distractor used, cafeteria noise, was not enough to bring about the expected effects / Introdução: O ruído pode afetar negativamente o desempenho cognitivo, interferindo na cognição, na memória de curto prazo, na atenção, nas funções executivas, na leitura e na escrita, prejudicando o desempenho cognitivo e a aprendizagem de crianças em idade escolar. Escolas brasileiras apresentam níveis de ruído acima do recomendado para conforto acústico, o que pode interferir no processo de aprendizado. Objetivo: Investigar o efeito do ruído ambiental nos movimentos sacádicos, na atenção concentrada e na leitura em um grupo de crianças sem alterações de leitura e escrita. Métodos: Foram avaliadas 42 crianças com idades entre 9 e 10 anos, sem alterações auditivas, visuais ou de leitura e escrita. Os movimentos sacádicos foram avaliados através da Eletronistagmografia; a atenção foi pelo Teste de Atenção por Cancelamento e a leitura foi avaliada através de um texto da Prova Brasil. Os testes foram realizados na situação de silêncio e com ruído de fundo de 76 dB (A) e 95 dB (A), previamente medidos na sala de aula. Resultados: O ruído não causou efeitos significantes na velocidade, na precisão e na latência dos movimentos sacádicos, bem como no número de erros, acertos, omissões e ausências no teste de atenção. Na prova de leitura foram encontradas diferenças na velocidade na presença de ruído. Quando expostas a ruídos de 76 dB (A) e 95 dB (A) as crianças leram menos palavras por minuto do que no silêncio. Conclusão: O efeito não significativo do ruído nos testes realizados, pode ser decorrente da exposição precoce ao ruído, causando um efeito de habituação ao ruído e pode-se pensar também que o tipo de distrador usado, ruído de cafeteria, não foi suficiente para provocar os efeitos esperados
|
48 |
Jeter un regard sur une phase précoce des traitements visuelsCrouzet, Sébastien 12 July 2010 (has links) (PDF)
L'objectif de cette thèse a été d'étudier la dynamique des traitements cognitifs permettant la reconnaissance rapide d'objets dans les scènes naturelles. Afin d'obtenir des réponses comportementales précoces, nous avons utilisé un protocole de choix saccadique, dans lequel les sujets devaient diriger leur regard le plus rapidement possible vers l'image contenant l'objet cible parmi deux images affichées à l'écran. Ce protocole a d'abord permis de mettre en évidence des différences de temps de traitement entre les catégories d'objets, avec un avantage particulier pour la détection des visages humains. En effet, lorsque ceux-ci sont utilisés comme cible, les premières saccades sélectives apparaissent dès 100 ms ! Nous nous sommes donc intéressés aux mécanismes permettant une détection aussi rapide et avons montré qu'un attribut bas-niveau pourrait être utilisé pour détecter et localiser les visages dans notre champ visuel en une fraction de seconde. Afin de mieux comprendre la nature des représentations précoces mises en jeu, nous avons mené deux nouvelles études qui nous ont permis de montrer que les saccades les plus rapides ne seraient pas influencées par les informations contextuelles, et seraient basées sur une information rudimentaire. Enfin, j'ai proposé un modèle simple de décision, basé sur des différences de temps de traitement neuronal entre catégories, qui permet de reproduire fidèlement nos résultats expérimentaux. L'ensemble de ces résultats, mis en perspective avec les connaissances actuelles sur les bases neuronales de la reconnaissance d'objet, démontre que le protocole de choix saccadique, en donnant accès à une fenêtre tempo- relle inaccessible jusqu'alors par les études comportementales, s'avère un outil de choix pour les recherches à venir sur la reconnaissance rapide d'objets.
|
49 |
Mechanisms of inhibition of return: Brain, behavior, and computational modelingSatel, Jason 21 March 2013 (has links)
Inhibition of return (IOR) is a cognitive phenomenon whereby reaction times (RTs) are slower to cued relative to uncued targets at cue-target onset asynchronies (CTOAs) greater than approximately 300 ms. One important theory of IOR proposes that there are two mutually exclusive forms of IOR, with an attentional/perceptual form arising when the oculomotor system is actively suppressed, and a motoric form arising when it is engaged (Taylor & Klein, 2000). Other theories propose that IOR is the result of multiple, additive neural mechanisms (Abrams & Dobkin, 1994). Here, we have performed computational simulations and empirical investigations in an attempt to reconcile these two competing theories. Using a dynamic neural field (DNF) model of the intermediate layers of the superior colliculus (iSC), we have modeled both a sensory adaptation mechanism of IOR, and a motoric mechanism resulting from the aftereffects of saccadic eye movements. Simulating these mechanisms, we replicated behavior and neurophysiology in a number of variations on the traditional cue-target paradigm (Posner, 1980). Predictions driven by these simulations have led to the proposal of many behavioral and neuroimaging experiments which further examine the plausibility of a 2-mechanisms theory of IOR. Contrary to our original predictions, we demonstrated that saccades are biased away from cued targets in a paired target saccade averaging paradigm, even at short CTOAs. In paradigms thought to recruit both sensory and motoric mechanisms, we robustly demonstrated that there are at least two independent, additive mechanisms of IOR when tasks require saccadic responses to targets. When similar paradigms were tested with manual responses to targets, additivity effects did not hold, implying that the motoric mechanism of IOR does not transfer from the oculomotor to skeletomotor systems. Furthermore, across numerous experiments using event-related potential (ERP) techniques, we have demonstrated that P1 component reductions are neither necessary, nor sufficient, for the behavioral exhibition of IOR. We propose that a comprehensive framework for behavioral IOR must include (at least) four independent neural mechanisms, differentially active depending on circumstances, including sensory adaptation, saccadic aftereffects, local inhibition, and cortical habituation.
|
50 |
Activity pattern on the map of the monkey superior colliculus during head-unrestrained and head-perturbed gaze shiftsChoi, Woo Young. January 2007 (has links)
It has been hypothesized that head-unrestrained gaze shifts are controlled by an error signal produced by a feedback loop. It has also been hypothesized that the superior colliculus (SC) is within this feedback loop. If the feedback-to-SC hypothesis is valid, an unexpected mid-flight perturbation in gaze trajectory should be quickly followed by a concurrent change in the discharges of collicular saccade-related neurons. To verify this prediction experimentally, primate head movements were unexpectedly and briefly halted during head-unrestrained gaze shifts in the dark. Perturbed gaze shifts were composed of first a gaze saccade made when the head was immobilized by the head-brake, followed by a period where gaze was immobile, called a gaze plateau. The latter was composed of an initial period when the eyes and head were immobile, followed by a period wherein the head was released and the eyes counter-rotated to stabilize gaze. The plateau ended with a corrective gaze saccade to the goal location. In perturbed gaze shifts, there was widely distributed activity on the SC map during gaze plateaus, and there was no evidence that the initial motor program was aborted; the corrective gaze saccades were not "fresh" small stand-alone movements. Cells on the SC map responded at short latencies to head accelerations and associated gaze shift perturbations and carried a gaze position error (GPE = final - instantaneous gaze position) signal. As a large gaze shift progressed there was a caudo-rostral moving hill of activity on the SC map that encoded, not instantaneous veridical GPE, but a filtered version of it (time constant 100ms). Recordings from both the motor map and the so-called "fixation zone" in the rostral SC during perturbed head-unrestrained gaze shifts reveal gaze feedback control and a gaze feedback signal to the SC. However, these results do not prove that the SC is within the online gaze feedback loop, only that such a loop exists and that the collicular map is informed about its calculations.
|
Page generated in 0.0466 seconds