Spelling suggestions: "subject:"accharide"" "subject:"disaccharide""
1 |
Design and Synthesis of a Boronic Acid Sensor to Study Carbohydrate Binding Using SERSPetersen, Paul Russell 01 August 2010 (has links)
Carbohydrates are known to play a large number of significant roles in various biological and pathological processes such as cancer metastasis and cellular communication. This is because of their ability to bind a wide range of hosts within the human body such as proteins and viruses. Due to these important interactions, carbohydrate sensing has long been a main focus of research. These research strategies have included the use of aptamers, non-covalent interactions, and boronic acid-based receptors. Boronic acid-based sensors are of particular interest due to their selectivity for 1,2- or 1,3-diols. Within these boronic acid-based studies, a large variety of techniques were employed for detection including different fluorescent, electrochemical, polymeric, and colorimetric studies, as well as various surface bound sensors. One type of technique that has rarely been applied is Surface Enhanced Raman Spectroscopy or SERS. This strategy would be beneficial as it provides information about functional groups, which would aid in the identification of the bound sugar. In this thesis, we present work based on the development of a boronic acid-based carbohydrate receptor that will be used to study carbohydrate binding through SERS. The receptor design includes an aryl boronic acid for carbohydrate recognition, a nitrogen atom in close proximity to the boron center to enhance binding, and a terminal thiol for attachment to a metal surface for SERS. This sensor will be used to study the binding of different saccharides for sensing applications.
|
2 |
Design and Synthesis of a Boronic Acid Sensor to Study Carbohydrate Binding Using SERSPetersen, Paul Russell 01 August 2010 (has links)
Carbohydrates are known to play a large number of significant roles in various biological and pathological processes such as cancer metastasis and cellular communication. This is because of their ability to bind a wide range of hosts within the human body such as proteins and viruses. Due to these important interactions, carbohydrate sensing has long been a main focus of research. These research strategies have included the use of aptamers, non-covalent interactions, and boronic acid-based receptors. Boronic acid-based sensors are of particular interest due to their selectivity for 1,2- or 1,3-diols. Within these boronic acid-based studies, a large variety of techniques were employed for detection including different fluorescent, electrochemical, polymeric, and colorimetric studies, as well as various surface bound sensors. One type of technique that has rarely been applied is Surface Enhanced Raman Spectroscopy or SERS. This strategy would be beneficial as it provides information about functional groups, which would aid in the identification of the bound sugar. In this thesis, we present work based on the development of a boronic acid-based carbohydrate receptor that will be used to study carbohydrate binding through SERS. The receptor design includes an aryl boronic acid for carbohydrate recognition, a nitrogen atom in close proximity to the boron center to enhance binding, and a terminal thiol for attachment to a metal surface for SERS. This sensor will be used to study the binding of different saccharides for sensing applications.
|
3 |
Mise au point de nouvelles méthodes de conjugaison oligonucléotide/sucre et développement d'un microsystème d'analyse des interactions lectine/sucre / Development of new methods for carbohydrate/oligonucleotide conjugation and of a microarray to study the lectin/carbohydrate interactionsPourceau, Gwladys 25 November 2010 (has links)
Les interactions entre les sucres et les lectines sont généralement l'étape clé dans de nombreux phénomènes biologiques et pathologiques. Malgré leu r importance cruciale, ces interactions sont paradoxalement caractérisées par des constantes d'affinité faibles et nécessite une multiprésentation des motifs saccharidiques pour être significatives. Cette augmentation est appelée "effet cluster". En outre, les techniques d'analyse actuellement utilisées en laboratoire nécessitent des quantités importantes de produits, ce qui est difficilement compatible avec les méthodes de synthèse actuelle. Pour pallier ces difficultés, une approche originale basée sur l'utilisation conjointe de glycooligonucléotide et de puces à ADN a été proposée. Les glycoconjugués basés sur des squelettes phosphodiesters et couplés à des séquences d'ADN ont été synthétisés en utilisant la chimie des oligonucléotides, couplée à la "click chemistry". La séquence d'ADN quant à elle a permis l'ancrage sur une puce à ADN et donc la mesure de leur affinité vis-à-vis de différentes lectines. Ce manuscrit rapporte le développement des nouvelles méthodologies de synthèse des glycooligonucléotides ainsi que la préparation de nombreux glycoconjugués originaux, dont l'affinité pour différentes lectines a été mesurée via l'utilisation de la puce à ADN. L'influence de plusieurs paramètres a été étudiée: le nombre de résidus, l'arrangement spatial, la lipophilie etc. Il s'avère que l'arrangement spatial semble être l'un des points les plus importants dans la mise au point d'un glycoconjugué. / The interactions between carbohydrates and lectins are generally the "key step" in many biological and pathological phenomena. Despite their importance, these interactions are paradoxically characterized by low affinity constants and requires multipresence of saccharide to be significant. This increase is called "cluster effect". In addition, the analysis techniques currently used in the laboratory requires large quantities of products, which is hardly compatible with the current methods of synthesis. To circumvent these difficulties, a original approach based on the combined use of glycooligonucleotides and DNA microarrays has been proposed. Glycoconjugates based on phosphodiester skeletons linked to DNA sequences have been synthesized using the chemistry of oligonucleotides, coupled with the "click chemistry". The DNA sequence has allowed the anchoring on a DNA chip and therefore the measurement of their affinity versus different lectins.This manuscript reports the development of new synthetic methodologies for the glycooligonucleotides synthesis and the preparation of many original glycoconjugates, whose affinity for various lectins was measured through the use of DNA microarray. The influence of several parameters was studied: the number of residues, the spatial arrangement, etc. lipophilicity. The spatial arrangement appears to be one of the most important parameters in the development of a glycoconjugate.
|
4 |
Combining recognition motifs for improved sensing and biological activity of phosphorylated moleculesHargrove, Amanda E. 15 June 2011 (has links)
Phosphorylated molecules play vastly important roles in the environment and biological systems. The main focus of this work sought to expand the current collection of synthetic phosphate receptors to include the binding of oligosaccharide phosphates. To this end, the synthesis of a boronic acid - appended porphyrin whose selectivity could be tuned through nucleic acid selection was pursued through a number of synthetic routes. Though difficulties were encountered with synthetic reactivities and product solubility, these efforts culminated in the development of a bis-boronic acid-substituted porphyrin soluble in DMSO/water mixtures that displays fluorescence quenching upon the addition of specific saccharide derivatives. In efforts to ease the synthetic burden, the creation of a DNA-based self-assembled receptor system was also investigated. Further, this work included the synthesis of phosphorylated derivatives of gemcitabine, a nucleoside chemotherapeutic drug, with the goal of developing targeted delivery systems for the improved treatment of cancer. Progress in each of these areas is discussed. / text
|
5 |
Utilisation et Modification de la β-cyclodextrine et de système mono-osidique en angiogenèse / Use and Modification of β-cyclodextrin and mono-saccharide system in angiogenesisAssam Evoung, Jean Norbert 21 December 2012 (has links)
La croissance tumorale et le développement des métastases sont dépendants de l'angiogenèse et reposent sur un « switch angiogénique ». Dès lors, inhiber l'angiogenèse apparaît très naturellement comme une nouvelle stratégie thérapeutique anti-cancéreuse qui consiste tout simplement à affamer une tumeur en la privant de sa vascularisation. L'angiogenèse est un processus physiologique qui fait intervenir de nombreux récepteurs, dont le récepteur du mannose-6-Phosphate ou Insulin Growth Factor II (RM6P/IGF-II). Des travaux antérieurs effectués au laboratoire ont montré que des molécules analogues du M6P sont des effecteurs d'angiogenèse mais qu'au cours de leur administration, ces composés sont facilement éliminés car trop hydrophiles. Afin d'obtenir des analogues du M6P plus lipophiles, nous avons remplacé le méthyle en position anomère par un pentyle. Par ailleurs, pour étudier l'effet « cluster » et la protection par une molécule enveloppante, une nouvelle famille de composés dérivant de la β-Cyclodextrine a été préparée. Des dérivés originaux, présentant des fonctions phosphates et azido, ainsi qu'une couronne de mannose ont été synthétisés. / Tumor growth and development of metastasis are dependent on angiogenesis and based on an « angiogenic switch». Therefore, to inhibit angiogenesis appears quite evidently as a new anticancer strategy which corresponds simply to starve a tumor by depriving its vascularisation. Angiogenesis is a physiological process that involves many receptors, including the RM6P/IGF-2. Previous work conducted in the laboratory has shown that analogues of M6P are effectors of angiogenesis but during administration, these compounds are easily removed due to their hydrophilicity. To increase the lipophilicity of the M6P analogues, we have replaced the methyl group at the anomeric position by a pentyl group. Also to study the “cluster” effect and the protective transport of molecules, a new family of compounds derived from β-cyclodextrin were prepared. Original derivatives, having azido and phosphate functions, and a crown made of mannose were synthesised.
|
6 |
Synthesis and Antifungal Evaluation of Barbiturate Saponins And Progress Towards Cysteinyl Metal PeptidesMadhav, Monika 17 May 2013 (has links)
Invasive fungal infections are a major threat to immune-compromised patients. There is a critical need to develop new antifungal agents because of increasing resistance to the common antifungal drugs.
In the first part of this dissertation, methods for preparation of novel barbiturate saponin as antifungals and their biological activities would be described. Barbiturates and steroidal saponins have shown remarkable antifungal activity in the biological assays. Therefore, attempts were directed to combine the barbiturate with the steroid to give novel antifungal agents. The need for extensive SAR studies and to better understand these compounds efforts were directed to synthesize novel saponin barbiturates.
Glycosylation of barbiturates was achieved under basic conditions to synthesize mono and disaccharide barbiturates. Saccharide molecules were directly introduced into the barbiturate without requiring protection and deprotection of saccharides. Efficient methods were developed for synthesis of 3β derivatized steroid derivatives containing ether, carbonate, ester and carbamate linker. Synthesized mono and disaccharide barbiturates were incorporated into the steroidal skeleton to give the novel antifungal agents. Several reaction conditions were explored to give the best yield under the most efficient reaction conditions. However, a better understanding and extensive SAR study needs to be done in order to develop more promising and potent antifungal compounds.
The second part of this dissertation describes the progress towards monocysteine metal complex synthesis and their biological activities. In this attempt, several protection deprotection strategies were explored and some novel protective groups were designed for peptide synthesis.
|
7 |
Caractérisation multi-échelle des interactions sucre-électrolyte pour une meilleure compréhension du transfert en nanofiltration / Multi-scale characterization of saccharide-electrolyte interactions for a better understanding of the transfer through nanofiltration mambranesTeychené, Johanne 24 November 2017 (has links)
Différentes études ont mis en évidence que la présence d'électrolyte modifie les performances de la nanofiltration et que l'augmentation du transfert observée est majoritairement gouvernée par la modification des propriétés du soluté (interactions soluté / électrolyte). Cependant, de nombreux verrous scientifiques et techniques restent encore à lever pour promouvoir l'intégration de ces opérations à l'échelle industrielle. Dans ce contexte, le travail proposé vise à améliorer la compréhension des mécanismes de transfert en s'appuyant d'une part sur la caractérisation multi-échelle des interactions dans les systèmes soluté neutre / électrolyte et plus particulièrement l'hydratation des espèces, et d'autre part sur la recherche de corrélations entre ces propriétés et les grandeurs de transfert. Plus précisément, il s'agit de comprendre comment les ions agissent sur les propriétés d'hydratation des sucres et leur transfert à travers une membrane de nanofiltration. Dans un premier temps, les propriétés volumiques de sucres (xylose, glucose, saccharose), qui caractérisent l'hydratation des solutés à l'échelle macroscopique, déterminées pour différentes compositions ioniques (LiCl, NaCl, KCl, Na2SO4, K2SO4, CaCl2, MgCl2, MgSO4), montrent que la déshydratation des sucres est principalement gouvernée par les interactions sucre / ions, dépendantes des propriétés des ions (valence, taille). Dans un second temps, la mécanique quantique est utilisée pour décrire les propriétés d'hydratation des ions et des sucres, seuls, puis en mélange à l'échelle microscopique. Il est montré que les sucres et les ions se déshydratent et que les sucres sont d'autant plus déshydratés que le nombre d'interactions sucre / ions augmente, qui lui-même augmente avec le nombre de coordinations des ions dans l'eau. Enfin, des corrélations quantitatives sont obtenues entre les propriétés d'hydratation des espèces (nombre d'hydratation, nombre de coordinations, nombre d'interactions...) obtenues aux différentes échelles et les grandeurs caractérisant le transfert. Ainsi, à partir de ces résultats prometteurs, des travaux complémentaires devraient permettre d'améliorer la prédiction des performances de la nanofiltration pour le traitement de solutions contenant des solutés organiques en présence d'électrolyte. / Different studies have shown that the presence of electrolyte modifies the nanofiltration performances and that the increase of the neutral solute transfer is mainly governed by the modification of the solute properties (neutral solute / electrolyte interactions). However, the development of such membrane processes is still limited since it is hardly possible to predict the process performances, In this context, the aim of this work is to study the neutral solute / electrolyte interactions using a fundamental multi scale approach in order to improve the knowledge of the transfer mechanisms taking place through nanofiltration membranes. More precisely, the objective is to understand how the ions act on the hydration properties of the saccharides and their transfer through a nanofiltration membrane. Firstly, the saccharide volumetric properties (xylose, glucose, sucrose), which characterize the solute hydration at the macroscopic scale, are determined in presence of various electrolytes (LiCl, NaCl, KCl, Na2SO4, K2SO4, CaCl2, MgCl2, MgSO4). The results show that the saccharide dehydration is due to the predominance of the saccharide / ions interactions depending on the ions' properties (valence, size). Secondly, quantum mechanics is used to describe the hydration properties of ions and saccharides, alone and then in a mixture at the microscopic scale. It is shown that both saccharide and ions are dehydrated and that the saccharides are more dehydrated for increasing saccharide / ions interactions number, which in turn increases with the ion's coordination number in water. It is also shown that the species hydration properties, obtained at different scales are consistent. Finally, quantitative correlations between the species hydration properties and the saccharide mass transfer parameters are obtained. Thus, from these promising results, further work will be devoted to improve the prediction of the performance of nanofiltration for the treatment of solutions containing organic solutes in the presence of electrolyte.
|
8 |
Chemical characterization of biomass burning and sea spray aerosolJayarathne, Thilina 01 May 2017 (has links)
Particulate matter (PM) suspended in air varies in size from nanometers to micrometers and contains a wide range of chemical components, including organic compounds, black carbon (soot), inorganic minerals and metals. Atmospheric aerosols are generated from either primary sources like volcanic eruptions, re-suspended soil dust, sea spray, vegetative detritus, fossil fuel and biomass combustion emissions; or secondary atmospheric reactions via gas-to-particle conversion of atmospheric gases. Particle size, abundance, and chemical composition determine how a particle interacts with light and other atmospheric constituents (e.g. gases, water vapor) in addition to its impact on human health. While atmospheric scientists have been working on characterizing atmospheric aerosols for many years, major gaps persist in understanding the properties of many globally-important sources. This dissertation provides new understanding of the chemical composition of biomass burning and sea spray aerosols.
PM emissions from biomass burning vary by fuel, and depend on fuel type and composition, moisture content, and combustion conditions. Although biomass smoke is critically important in global climate and local-regional health impacts, the physical and chemical composition of biomass burning aerosol is still not fully understood in the case of peat, agricultural residues and cooking fires. The Fire Laboratory at Missoula Experiments (FLAME) were designed to fulfill these gaps to improve our understanding in both historically undersampled and well-studied fuels while adding new instrumentation and experimental methods to provide previously unavailable information on chemical properties of biomass burning emissions. Globally-important biomass fuels were combusted in a controlled environment, and PM was chemically characterized to compute fuel based emission factors (EF) as the amount of chemical species released per unit mass of fuel burned. We showed that chemical composition of PM varies for different fuel types and certain fuels types (e.g., peat and ocote) emit considerably high concentrations of polycyclic aromatic compounds that are associated with negative health effects. We also showed that PM from biomass smoke contains fluoride for the first time, at approximately 0.1% by weight. With respect to the annual global emissions of PM due to biomass burning, this makes biomass burning an important source of fluoride to the atmosphere. Further, peatland fire emissions are one of the most understudied atmospheric aerosol sources but are a major source of greenhouse gases globally and cause severe air quality problems in Asia. This thesis provides the first field-based emissions characterization study, for samples collected at peat burning sites in Central Kalimantan, Indonesia. Using these EFs and estimates of the mass of fuel burned, it was estimated that 3.2 - 11 Tg of PM2.5 were emitted to atmosphere during 2015 El Niño peat fire episode which is ~10 % of estimated total annual PM flux for biomass burning. Overall, these studies computed more representative EFs for previously undersampled sources like peat, and previously unidentified chemical species like fluoride that can be used to update regional and global emission inventories.
The concentration and composition of organic compounds in sea spray aerosol (SSA) alters its optical properties, hygroscopicity, cloud condensation, and ice nucleation properties and thus affects Earth’s radiative budget. In the past, SSA has been difficult to characterize, because of low concentrations relative to background pollutants. Nascent SSA was generated during a mesocosm, using a wave-flume at the University of California, San Diego and was characterized for saccharides and inorganic ions in order to assess their relative enrichment in fine (PM2.5) and coarse (PM10-2.5) SSA and sea surface microlayer (SSML) relative to seawater. For the first time, we showed that saccharides comprise a significant fraction of organic matter in fine and coarse SSA contributing 11 % and 27 %, respectively. Relative to sodium, saccharides were enriched 14-1314 times in fine SSA, 3-138 times in coarse SSA, but only up to 1.0-16.2 times in SSML. The saccharide and ion concentration in SSML and persistent whitecap foam was quantitatively assessed by another mesocosm study performed under controlled conditions. We demonstrated that relative to sodium, saccharides were enriched 1.7-6.4 times in SSML and 2.1-12 times in foam. Higher enrichment of saccharides in foam over the SSML indicates that surface active organic compounds become increasingly enriched on aged bubble film surfaces. Similarly, we showed that fine SSA contains saccharides characteristic of energy-related polysaccharides, while coarse SSA contains saccharides that are characteristic of structure-related polysaccharides. The ultrafiltration studies showed that structure-related polysaccharides effectively coagulate to form large particulate organic matter and size is likely the reason for their exclusion from small SSA. The enrichment of organic species in SSML, foam and SSA led to an enrichment of inorganic ions probably through chelation with organic molecules. Mean enrichment factors for major ions demonstrated the highest enrichment in fine SSA for potassium (1.3), magnesium (1.4), and calcium (1.7). Consequently, due to these organic and inorganic enrichments, SSA develops a significantly different chemical profile compared to seawater. These improved chemical profiles of SSA should be used to develop laboratory proxies to further study the transfer of organic matter across the ocean-air interface and the physical properties of SSA. .
Overall, the results presented in this dissertation provide new chemical profiles for previously understudied emission sources like peatland fire emissions, and previously unquantified chemical species like F- in biomass burning emissions and enrichment of saccharides and ions in SSA. These data could be used in updating regional and global emission inventories, atmospheric modeling and human exposure studies.
|
9 |
Arylboronic Acids With Strong Fluorescence Intensity Changes Upon Sugar BindingLaughlin, Sarah R 14 December 2011 (has links)
Boronic acids play an important role in the design and synthesis of chemosensors for carbohydrates due to their ability to reversibly bind with diol-containing compounds. Along this line, the availability of boronic acids that change fluorescence upon sugar binding is critical to a successful sensor design effort. Here, two boronic acids that show strong fluorescent intensity changes upon sugar binding are reported: isoquinoline-7-boronic acid (7-IQBA) and phenoxathiin-4-boronic acid (4-POBA).
|
10 |
Synthesis Of D-Galactose Based Amphiphilic Copolymers And Preliminary Studies On Their Blood CompatibilityMarutirao, Balwalli Nirmala 07 1900 (has links) (PDF)
No description available.
|
Page generated in 0.0508 seconds