Spelling suggestions: "subject:"saccharomyces cerevisiae"" "subject:"accharomyces cerevisiae""
451 |
RNA polymerase I transcriptional regulation in Saccharomyces cerevisiae /Hontz, Robert Duane. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Includes bibliographical references. Also available online through Digital Dissertations.
|
452 |
The effect of medium composition and ethanol toxicity on the growth of Saccharomyces cerevisiae strain W303-1A(a).De Smidt, O., Du Preez, J.C., Albertyn, J. January 2010 (has links)
Published Article / The growth of Saccharomyces cerevisiae strain W303-1A(a) was evaluated in complex and chemically defined media. The use of chemically defined medium allowed the complete utilisation of glucose within 20 h. as well as all of the produced ethanol within 45 h. Maximum specific growth rates (µmax) were increased from 0.28 h-1 to 0.42 h-1 and the volumetric rate of ethanol production increased from 0.204 g l-1 h-1 to 0.597 g l-1 h-1. However, when the ethanol concentration exceeded a threshold value of 10 g l-1, the µmax value was significantly decreased. These observations suggest that ethanol metabolism related growth experiments for the relevant strain should be carried out in chemically defined medium with ethanol concentrations below 10 g l-1.
|
453 |
The cloning of genes involved in carnitine-dependent activities in Saccharomyces cerevisiaeSwiegers, Jan Hendrik 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2000. / ENGLISH ABSTRACT: L-Carnitine is a unique and important compound in eukaryotic cells. In Saccharomyces
cerevisiae, L-carnitine plays a role in the transfer of acetyl groups from the peroxisomes to
the mitochondria. This takes place with the help of the carnitine acetylcarnitine shuttle. The
activated acyl group of acetyl-CoA in the peroxisome is transferred to carnitine with the
help of a peroxisomal carnitine acetyltransferase to form an acetylcarnitine ester, releasing
the CoA-SH. This ester is then transported through the peroxisomal membrane to the
cytosol from where it is transported to the mitochondrion. After transport of the
acetylcarnitine through the mitochondrial membranes, the reverse reaction takes place in
the matrix with the help of a mitochondrial carnitine acetyltransferase, releasing carnitine
and the acyl group. In S. cerevisiae, the main carnitine acetyltransferase contributing to
>95% of the total carnitine acetyltransferase activity, is encoded by a single gene, CAT2.
Cat2p has a peroxisomal and mitochondrial targeting signal and is located to the
peroxisomal membrane and the inner-mitochondrial membrane, respectively.
The reason for the activated acyl group to be transferred in the form of an acetylcarnitine,
is that the peroxisomal membrane is impermeable to acetyl-CoA. This means that the acyl
group needs to be transported in the form of intermediate compounds. Acetyl-CoA is
formed in the peroxisome of S. cerevisiae as a result of p-oxidation of fatty acids. In yeast,
the peroxisome is the sole site for p-oxidation. Fatty acids are transported to the
peroxisome where they are oxidized by the p-oxidation cycle to form two-carbon acyl
groups in the form of acetyl-CoA. These two-carbon acyl groups are then transferred from
the peroxisome to the rest of the cell for gluconeogenesis and other anabolic pathways, or
used in the tricarboxylic acid cycle (TCA) of the mitochondia to generate ATP. In this way,
it is possible for the cell to use fatty acid as a sole carbon source.
There is a second pathway allowing for the utilization of activated acyl groups produced in
the peroxisome and that is the glyoxylate cycle. The glyoxylate cycle is a modified TCA
cycle, which results in the synthesis of C4 succinate from two molecules of acetyl-CoA. In
S. cerevisiae, all of the enzymes of the glyoxylate cycle are located in the peroxisome
except for one, whereas in other yeasts studied, all of the glyoxylate enzymes are
peroxisomal. As a result of the glyoxylate cycle, the two carbons of acetyl-CoA can leave
the peroxisome in the form of succinate or other TCA intermediates like malate and citrate.
These compounds are transferred through dicarboxylic acid carriers present in the
peroxisomal membrane and used in further metabolic needs of the cell.
To understand the role of carnitine in the cell, a strategy for the cloning of genes involved
in carnitine-dependent activities in S. cerevisiae was developed. The disruption of the
citrate synthetase gene, CIT2, of the glyoxylate cycle yielded a strain that was dependent on carnitine when grown on the fatty acid oleic acid. This allowed for a mutagenesis
strategy based on negative selection of mutants affected in carnitine-dependent activities.
The ~cit2 strain was mutagenized and plated on minimal media. After replica plating on
oleic acid media, mutant strains were selected that were unable to grow even in the
presence of carnitine. In order to eliminate strains with defects in peroxisome biogenesis
and ~-oxidation, and only select for strains with defects in carnitine-dependent activities,
the mutant strains were transformed with the CIT2 gene to restore the glyoxylate cycle.
Mutants that grew on oleic acid after transformation, and which are therefore not affected
in activities independent of carnitine, were retained for further analysis. Transforming one
of these mutants with a S. cerevisiae genomic library for functional complementation,
yielded a clone carrying the YAT1 gene, coding for the carnitine acetyltransferase of the
outer-mitochondrial membrane. No phenotype had previously been assigned to a mutant
allele of this gene. / AFRIKAANSE OPSOMMING: L-Karnitien is 'n unieke en belangrike verbinding in eukariotiese selle. In Saccharomyces
cerevisiae speel L-karnitien In rol in die oordrag van asielgroepe van die peroksisoom na
die mitochondrion. Dit vind plaas met behulp van die karnitien-asetielkarnitien-weg. Die
geaktiveerde asiel groep van asetiel-KoA in die peroksisoom word na karnitien oorgedra
met behulp van 'n peroksisomale karnitien-asetielkarnitien-transferase-ensiem om 'n
asetielkarnitien ester te vorm, waarna die KoA-SH vrygestel word. Hierdie ester word dan
deur die peroksisomale membraan na die sitoplasma vervoer waarna dit na die
mitochondrion vervoer word. Nadat die asetielkarnitien deur die mitochondriale membrane
vervoer is, vind die omgekeerde reaksie in die matriks plaas met behulp van die
mitochondriale karnitien-asetielkarnitien-transferase-ensiem, waarna die karnitien en die
asielgroep vrygestel word. In S. cerevisiae word die hoof karnitien-asetielkarnitien
transferase wat tot >95% van die totale karnitien-asetielkarnitien-transferase-aktiwiteit
bydra, deur 'n enkele geen, CA T2 gekodeer. CAT2p het 'n peroksisomale en
mitochondriale teikensein en dit word onderskeidelik na die peroksisomale en binnemitochondriale
membrane gelokaliseer.
OPSOMMING
Die geaktiveerde asielgroep word in die vorm van 'n asetielkarnitien vervoer omdat die
peroksisomale membraan ondeurlaatbaar vir asetiel-KoA is. Dit beteken dat die
asielgroepe slegs in die vorm van intermediêre verbindings vervoer kan word. Asetiel-KoA
word weens p-oksidasie van vetsure in die peroksisoom van S. cerevisiae gevorm. In gis
is die peroksisoom die enigste plek waar p-oksidasie plaasvind. Vetsure word na die
peroksisoom vervoer waar dit deur die p-oksidasiesiklus geoksideer word om tweekoolstof
asielgroepe in die vorm van asetiel-KoA te vorm. Hierdie twee-koolstof
asielgroepe word dan vanaf die peroksisoom na die res van die sel vervoer vir
glukoneogenese en ander metaboliese paaie, of dit word in die trikarboksielsuursiklus
(TKS) van die mitochondrion gebruik om ATP te genereer. Op hierdie wyse is dit moontlik
vir die sel om vetsure as enigste koolstofbron te benut.
Die glioksilaatsiklus is 'n tweede weg wat die benutting van asielgroepe, wat in die
peroksisoom geproduseer is, toelaat. Die glioksilaatsiklus is 'n gemodifiseerde TKS-siklus
wat die sintese van C4 suksinaat van uit twee molekules asetiel-KoA bewerkstellig. In
teenstelling met ander giste waar al die glioksilaatsiklus ensieme in die peroksisoom geleë
is, kom een van S. cerevisiae se ensieme buite die peroksisoom voor. Die resultaat van
die glioksilaatsiklus is dat die twee koolstowwe van asetiel-KoA die peroksisoom in die
vorm van suksinaat of ander TKS-intermediêre verbindings soos malaat en sitraat, kan
verlaat. Hierdie verbindings word deur middel van dikarboksielsuur-transporters in die
peroksisomale membraan vervoer en word dan vir verdere metaboliese behoeftes in die
sel gebruik. Om die rol van karnitien in die sel te verstaan, is 'n strategie ontwikkel om gene wat by
karnitien-afhanklike aktiwiteite in S. cerevisiae betrokke is, te kloneer. Die disrupsie van
die sitraatsintesegeen, CIT2, van die glioksilaatsiklus het 'n ras gelewer wat van karnitien
vir groei op die vetsuur oleiensuur afhanklik was. Die fl.cit2-ras is gemuteer en op minimale
media uitgeplaat. Na replika-platering op oleiensuur media, is mutante rasse geselekteer
wat nie gegroei het nie, selfs nie in die teenwoordigheid van karnitien nie. Om mutantrasse
uit te skakel wat defekte in peroksisoom-biogenese en p-oksidasie het en net mutantrasse
te selekteer wat defekte in karnitien-afhanklike aktiwiteite het, is die rasse met die CIT2-
geen getransformeer om die glioksilaatsiklus te herstel. Mutante wat na transformasie op
oleiensuur gegroei het, en dus nie in aktiwiteite onafhanklik van karnitien geaffekteer is
nie, is behou en aan verdere analise blootgestel. Komplimentering van een van hierdie
mutante met 'n S. cerevisiae genomiese biblioteek, het 'n kloon wat die geen YAT1 bevat,
gelewer. YAT1 is 'n geen wat die karnitienasetieltransferase van die buite-mitochondriale
membraan kodeer. Geen fenotipe is ooit voorheen aan 'n mutant alleel in hierdie geen
toegeskryf nie.
|
454 |
Development of synthetic signal sequences for heterologous protein secretion from Saccharomyces cerevisiaeKriel, Johan Hendrik 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: Protein secretion and intracellular transport are highly regulated processes and
involve the interplay of a multitude of proteins. A unique collection of thermosensitive
secretory mutants allowed scientists to demonstrate that the secretory pathway of the
yeast Saccharomyces cerevisiae is very similar to that of the higher eukaryotes. All
proteins commence their journey in the endoplasmic reticulum, where they undergo
amino-linked core glycosyl modification. After passage through the Golgi apparatus,
where the remodelling of the glycosyl chains is completed, proteins are transported to
their final destinations, which are either the cell surface, periplasmic space or the
vacuole.
Proteins destined for secretion are usually synthesised with a transient
amino-terminal secretion leader of varying length and hydrophobicity, which plays a
crucial role in the targeting and translocation of their protein cargo. Considerable
effort has been made to elucidate the molecular mechanisms involved in these
processes, especially due to their relevance in a rapidly expanding biotech industry.
The advantages of S. cerevisiae as a host for the expression of recombinant
proteins are well documented. Unfortunately, S. cerevisiae is also subject to a
number of drawbacks, with a relative low product yield being one of the major
disadvantages.
Bearing this in mind, different secretion leaders were compared with the aim of
improving the secretion of the LKA 1 and LKA2 a-amylase enzymes from the
S. cerevisiae secretion system. The yeast Lipomyces kononenkoae is well known for
its ability to degrade raw starch and an improved secretion of its amylase enzymes
from S. cerevisiae paves the way for a potential one-step starch utilisation process.
Three sets of constructs were prepared containing the LKA 1 and LKA2 genes
separately under secretory direction of either their native secretion leader, the
S. cerevisiae mating pheromone a-factor (MFa1) secretion leader, or the MFa1
secretion leader containing a synthetic C-terminal spacer peptide (EEGEPK). The
inclusion of a spacer peptide in the latter set of constructs ensured improved Kex2p
proteolytic processing of the leader/protein fusion. Strains expressing the amylase
genes under their native secretion leaders resulted in the highest saccharolytic
activity in the culture medium. In contrast to this, strains utilising the synthetic
secretion leader produced the highest fermentation yield, but had a lower than
expected extracellular activity. We hypothesise that the native amylase leaders may
function as intramolecular chaperones in the folding and processing of their
passenger proteins, thereby increasing processing efficiency and concomitant
enzyme activity. / AFRIKAANSE OPSOMMING: Proteïensekresie en intrasellulêre transport is hoogs gereguleerde prosesse en
betrek die onderlinge wisselwerking van 'n verskeidenheid proteïene. 'n Unieke
versameling van temperatuur-sensitiewe sekresiemutante het wetenskaplikes in staat
gestelom die ooreenkoms tussen die sekresiepad van die gis
Saccharomyces cerevisiae en dié van komplekser eukariote aan te toon. Alle
proteïene begin hul reis in die endoplasmiese retikulum, waartydens hulle ook
amino-gekoppelde kernglikosielveranderings ondergaan. Nadat die proteïene deur
die Golgi-apparaat beweeg het, waar die laaste veranderings aan die
glikosielkettings plaasvind, word hulle na hul finale bestemmings, waaronder die
seloppervlak, die periplasmiese ruimte of die vakuool, vervoer.
Proteïene wat vir sekresie bestem is, word gewoonlik met 'n tydelike,
amino-eindpuntsekresiesein, wat 'n kritiese rol in die teiken en translokasie van hul
proteïenvrag speel, gesintetiseer. Heelwat pogings is in hierdie studie aangewend
om die molekulêre meganismes betrokke by hierdie prosesse te ontrafel, veral as
gevolg van hul toepaslikheid in 'n vinnig groeiende biotegnologiebedryf.
Die voordele van S. cerevisiae as 'n gasheer vir die uitdruk van rekombinante
proteïene is alombekend. S. cerevisiae het egter ook verskeie nadele, waaronder die
relatiewe lae produkopbrengs die belangrikste is.
Teen hierdie agtergrond, is verskillende sekresieseine met mekaar vergelyk met
die doelom die sekresie van die LKA 1 en LKA2 a-amilasegene vanuit die
S. cerevisiae-uitdrukkingsisteem te verbeter. Die gis Lipomyces kononenkoae is
bekend vir sy vermoeë om rou stysel af te breek en 'n verbeterde sekresie van sy
amilasegene vanuit S. cerevisiae baan die weg vir 'n moontlike een-stap
styselgebruiksproses. Drie stelle konstrukte is gemaak wat die LKA 1- en LKA2- gene
onafhanklik onder sekresiebeheer van onderskeidelik hul inheemse sekresiesein, die
S. cerevisiae paringsferomoonsekresiesein (MFa1) of die MFa1-sekresiesein met 'n
sintetiese koppelingspeptied aan die C-eindpunt (EEGEPK), plaas. Die insluiting van
'n koppelingspeptied in die laasgenoemde stel konstrukte verseker verbeterde Kex2p
proteolitiese prosessering van die sein/proteïenfusie. Rasse wat die amilasegene
onder beheer van hul inheemse sekresieseine uitdruk, het die beste saccharolitiese
aktiwiteit in die kultuurmedia getoon. In teenstelling hiermee, het rasse wat van die
sintetiese sekresiesein gebruik maak, die beste fermentasie-opbrengs getoon, maar
met 'n laer as verwagte ekstrasellulêre aktiwiteit. Ons vermoed dat die inheemse
amilaseseine as intramolekulêre begeleiers optree in die vou en prosessering van hul
proteïenpassasiers, wat lei tot verbeterde prosessering en ensiemaktiwiteit.
|
455 |
The role of carnitine acetyltransferases in the metabolism of Saccharomyces cerevisiaeKroppenstedt, Sven 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: L-carnitine is a compound with a long history in biochemistry. It plays an important
role in mammals, where many functions have been attributed to it. Those functions
include the p-oxidation of long-chain fatty acids, the regulation of the free CoASH/
Acyl-CoA ratio and the translocation of acetyl units into mitochondria. Carnitine is
also found in lower eukaryotic organisms. However, in contrast to the multiple roles it
plays in mammalian cells, its action appears to be restricted to the transport of
activated acyl residues across intracellular membranes in the lower eukaryotes. In
the yeast Saccharomyces cere visiae , the role of carnitine consists mainly of the
transfer of activated acetyl residues from the peroxisome and cytoplasm to the
mitochondria. This process is referred to as the carnitine shuttle. This system
involves the transfer of the acetyl moiety of acetyl-CoA, which cannot cross
organellar membranes, to a molecule of carnitine. Subsequently, the acetylcarnitine
is transported across membranes into the mitochondria, where the reverse transfer
of the acetyl group to a molecule of free CoA occurs for further metabolism. Carnitine
acetyl transferases (CATs) are the enzymes responsible for catalysing the transfer of
the activated acetyl group of acetyl-CoA to carnitine as well as for the reverse
reaction.
In the yeast S. cerevisiae, three CAT enzymes, encoded by the genes CAT2,
YAT1 and YAT2, have been identified. Genetic data suggest, that despite the high
sequence similarity, each of the genes encodes for a highly specific activity that is
part of the carnitine shuttle. So far, the specific function of any of the three CAT
enzymes has been elucidated only partially.
The literature review focuses mainly on the importance of the carnitine system in
mammals. After discussing the discovery and biosyntheses of carnitine, the
enzymatic background of and molecular studies on the carnitine acyltransferases are
described.
The experimental section focuses on elucidating the physiological roles and
cellular localisation of the three carnitine acetyltransferase of S. cere visia e. We
developed a novel enzymatic assay to study CAT activity in vivo. By C-terminal
tagging with a green fluorescent protein, we localised the three CAT enzymes.
However, all our genetic attempts to reveal specific roles for and functions of
these enzymes were unsuccessful. The overexpression of any of the CAT genes
could not cross-complement the growth defect of other CAT mutant strains. No
phenotypical difference could be observed between strains carrying single, double
and triple deletions of the CAT genes. Furthermore, the expression of the
Schizosaccharomyces pombe dicarboxylic acid transporter can complement the
deletion of the peroxisomal citrate synthase, but has no effect on the carnitine shuttle
per se. Our data nevertheless suggest that Cat2p is the enzyme mainly responsible
for the forward reaction, e.g. the formation of acetylcarnitine and free CoA-SH from acetyl-CoA and carnitine, whereas Yat1 pand Yat2p may be required mainly for the
reverse reaction. / AFRIKAANSE OPSOMMING: L-karnitien is 'n verbinding met 'n lang geskiedenis in die biochemie-veld. Dit speel 'n
belangrike rol in soogdiere, waar verskeie funksies daaraan toegeskryf word. Dié
funksies sluit in die p-oksidasie van lang-ketting-vetsure, die regulering van die vrye
KoA-SH-tot-asiel-KoA-verhouding en die oordrag van asetieleenhede na die
mitochondria. Karnitien word ook in laer eukariotiese organismes gevind. In
teenstelling met die verskeidenheid rolle wat dit in soogdierselle vervul, is die funksie
in laer eukariote tot die transport van geaktiveerde asetielderivate oor intrasellulêre
membrane beperk. In die gis Saccharomyces cerevisiae is die funksie van karnitien
meestal beperk tot die vervoer van geaktiveerde asetielresidu's vanaf die sitoplasma
en piroksisome na mitochondria, 'n proses wat as die "karnitiensiklus" bekend staan.
Die proses behels die oordrag van die asetielgedeelte van asetiel-KoA, wat nie oor
organelmembrane kan beweeg nie, na 'n molekuul van karnitien. Gevolglik word die
asetielkarnitien oor die membraan na die mitochondria vervoer, waar - met die oog
op verdere metabolisme - die omgekeerde oordrag van die asetielgroep na 'n vrye
molekuul van KoA plaasvind. Karnitienasetiel-transferases (KAT's) is die ensieme
wat verantwoordelik is vir die katalisering van die oordrag van die geaktiveerde
asetielgroepe van asetiel-KoA na karnitien, sowel as vir die omgekeerde reaksie.
In die gis S. cerevisiae is drie KAT-ensieme geïdentifiseer wat deur die gene
CAT2, YAT1 en YAT2 gekodeer word. Genetiese data dui daarop dat, ten spyte van
die hoë mate van homologie van die DNA-volgordes, elke geen vir 'n hoogs
spesifieke aktiwiteit, wat deel van die karnitiensiklus is, kodeer. Tot dusver is die
spesifieke funksie van die drie individuele KAT-ensieme net gedeeltelik ontrafel.
Die literatuurstudie fokus hoofsaaklik op die belangrikheid van karnitiensisteme
in soogdiere. Na 'n bespreking van die ontdekking en biosintese van karnitien, word
die ensimatiese agtergrond en molekulêre studies van KAT's beskryf.
Die eksperimentele deel konsentreer op die ontrafelling van die fisiologiese rol
en intrasellulêre lokalisering van die drie KAT-ensieme van S. cerevisiae. Eerstens is
'n nuwe ensimatiese toets ontwikkel om KAT-aktiwiteit in vivo te bestudeer. Deur
C-terminale aanhegting van 'n groen fluoreserende proteïen kon die drie KATensieme
gelokaliseer word.
Daar kon egter nie met behulp van genetiese studies verder lig gewerp word op
die spesifieke rolle en funksies van hierdie KAT-ensieme nie. Die ooruitdrukking van
enige van die KAT-gene kon nie die groeidefek van ander KAT-mutantrasse
kruiskomplementeer nie. Geen fenotipiese verskil tussen rasse wat 'n enkel, dubbel
of trippel delesie van die KAT-gene bevat, kon waargeneem word nie. Verder kon die
uitdrukking van Schizosaccharomyces pombe se dikarboksielsuurtransporter die
delesie van die peroksisomale sitraatsintetase komplementeer, maar het dit as sulks
geen effek op die karnitiensiklus gehad nie. Die data wat deur hierdie studie verkry is, dui nogtans daarop dat Cat2p die ensiem is wat hoofsaaklik verantwoordelik is vir
die voorwaartse reaksie, met ander woorde die vorming van asetielkarnitien en vrye
KoH-SH van asetiel-KoA en karnitien, terwyl Yat1 p en Yat2p hoofsaaklik vir die
omgekeerde reaksie benodig word.
|
456 |
Development of improved α-amylasesRamachandran, Nivetha 03 1900 (has links)
Thesis (DSc (Microbiology))--University of Stellenbosch, 2005. / The technological advancement of modern human civilisation has, until recently, depended
on extensive exploitation of fossil fuels, such as oil, coal and gas, as sources of energy. Over
the last few decades, greater efforts have been made to economise on the use of these nonrenewable
energy resources, and to reduce the environmental pollution caused by their
consumption. In a quest for new sources of energy that will be compatible with a more
sustainable world economy, increased emphasis has been place on researching and
developing alternative sources of energy that are renewable and safer for the environment.
Fuel ethanol, which has a higher octane rating than gasoline, makes up approximately
two-thirds of the world’s total annual ethanol production. Uncertainty surrounding the longterm
sustainability of fuel ethanol as an energy source has prompted consideration for the
use of bioethanol (ethanol from biomass) as an energy source. Factors compromising the
continued availability of fuel ethanol as an energy source include the inevitable exhaustion of
the world’s fossil oil resources, a possible interruption in oil supply caused by political
interference, the superior net performance of biofuel ethanol in comparison to gasoline, and
a significant reduction in pollution levels. It is to be expected that the demand for
inexpensive, renewable substrates and cost-effective ethanol production processes will
become increasingly urgent.
Plant biomass (including so-called ‘energy crops’, agricultural surplus products, and
waste material) is the only foreseeable sustainable source of fuel ethanol because it is
relatively low in cost and in plentiful supply. The principal impediment to more widespread
utilisation of this important resource is the general absence of low cost technology for
overcoming the difficulties of degrading the recalcitrant polysaccharides in plant biomass to
fermentable sugars from ethanol can be produced. A promising strategy for dealing with this
obstacle involves the genetic modification of Saccharomyces cerevisiae yeast strains for use
in an integrated process, known as direct microbial conversion (DMC) or consolidated
bioprocessing (CBP). This integrated process differs from the earlier strategies of SHF
(separate hydrolysis and fermentation) and SSF (simultaneous saccharification and
fermentation, in which enzymes from external sources are used) in that the production of
polysaccharide-degrading enzymes, the hydrolysis of biomass and the fermentation of the
resulting sugars to ethanol all take place in a single process by means of a polysaccharidefermenting
yeast strain.
The CBP strategy offers a substantial reduction in cost if S. cerevisiae strains can be
developed that possess the required combination of substrate utilisation and product
formation properties. S. cerevisiae strains with the ability to efficiently utilise polysaccharides
such as starch for the production of high ethanol yields have not been described to date.
However, significant progress towards the development of such amylolytic strains has been
made over the past decade.
With the aim of developing an efficient starch-degrading, high ethanol-yielding yeast
strain, our laboratory has expressed a wide variety of heterologous amylase-encoding genes
in S. cerevisiae. This study forms part of a large research programme aimed at improving
these amylolytic ‘prototype’ strains of S. cerevisiae. More specifically, this study investigated the LKA1- and LKA2-encoded α-amylases (Lka1p and Lka2p) from the yeast Lipomyces
kononenkoae. These α-amylases belong to the family of glycosyl hydrolases (EC 3.2.1.1)
and are considered to be two of the most efficient raw-starch-degrading enzymes. Lka1p
functions primarily on the α-1,4 linkages of starch, but is also active on the α-1,6 linkages. In
addition, it is capable of degrading pullulan. Lka2p acts on the α-1,4 linkages.
The purpose of this study was two-fold. The first goal was to characterise the molecular
structure of Lka1p and Lka2p in order to better understand the structure-function
relationships and role of specific amino acids in protein function with the aim of improving
their substrate specificity in raw starch hydrolysis. The second aim was to determine the
effect of yeast cell flocculence on the efficiency of starch fermentation, the possible
development of high-flocculating, LKA1-expressing S. cerevisiae strains as ‘whole-cell
biocatalysts’, and the production of high yields of ethanol from raw starch.
In order to understand the structure-function relationships in Lka1p and Lka2p, standard
computational and bioinformatics techniques were used to analyse the primary structure. On
the basis of the primary structure and the prediction of the secondary structure, an N-terminal
region (1-132 amino acids) was identified in Lka1p, the truncation of which led to the loss of
raw starch adsorption and also rendered the protein less thermostable. Lka1p and Lka2p
share a similar catalytic TIM barrel, consisting of four highly conserved regions previously
observed in other α-amylase members. Furthermore, the unique Q414 of Lka1p located in the
catalytic domain in place of the invariant H296 (TAKA amylase), which offers transition state
stabilisation in α-amylases, was found to be involved in the substrate specificity of Lka1p.
Mutational analysis of Q414 performed in the current study provides a basis for understanding
the various properties of Lka1p in relation to the structural differences observed in this
molecule. Knowing which molecular features of Lka1p contribute to its biochemical properties
provides us with the potential to expand the substrate specificity properties of this α-amylase
towards more effective processing of its starch and related substrates.
In attempting to develop ‘whole-cell biocatalysts’, the yeast’s capacity for flocculation was
used to improve raw starch hydrolysis by S. cerevisiae expressing LKA1. It was evident that
the flocculent cells exhibited physicochemical properties that led to a better interaction with
the starch matrix. This, in turn, led to a decrease in the time interval for interaction between
the enzyme and the substrate, thus facilitating faster substrate degradation in flocculent cells.
The use of flocculation serves as a promising strategy to best exploit the expression of LKA1
in S. cerevisiae for raw starch hydrolysis.
This thesis describes the approaches taken to investigate the molecular features involved
in the function of the L. kononenkoae α-amylases, and to improve their properties for the
efficient hydrolysis of raw starch. This study contributes to the development of amylolytic
S. cerevisiae strains for their potential use in single-step, cost-effective production of fuel
ethanol from inexpensive starch-rich materials.
|
457 |
Heterologous expression of a recombinant metallothionein from water hyacinth eichhornia crassipes in saccharomyces cerevisiaeWong, Hang-yee., 黃幸兒. January 2002 (has links)
published_or_final_version / Botany / Master / Master of Philosophy
|
458 |
The SEC20-TIP1 complexSweet, Deborah Jane January 1993 (has links)
No description available.
|
459 |
The effect of DNA replication on telomere positioning in S. cerevisiaeEbrahimi, Hani January 2008 (has links)
In eukaryotes, chromosomes are non-randomly positioned within the nucleus. The perinuclear localization of <i>S. cerevisiae </i>telomeres provides a useful model for studying mechanisms that control chromosome positioning. In budding yeast, telomeres tend to be localized at the nuclear periphery during early interphase, but following S phase they delocalize and remain randomly positioned within the nucleus. In this thesis, I investigate whether DNA replication causes telomere dislodgment from the nuclear periphery. First, using live-cell fluorescence microscopy I show that delaying DNA replication causes a corresponding delay in the dislodgement of telomeres from the nuclear envelope, demonstrating that replication of individual telomeres causes their delocalization. Second, I show that telomere dislodgment is not simply the result of recruitment of telomeres to a replication factory that is formed in the nuclear interior, since I found that telomeric DNA replication can occur either at the nuclear periphery or in the nuclear interior. The telomere binding complex Ku is one of the factors that establishes telomere localization to the nuclear envelope. Using a gene locus tethering assay, I show that the Ku-mediated telomere localization pathway is inactivated after DNA replication. Based on these findings, I propose that DNA replication causes telomere delocalization by triggering stable repression of the Ku-mediated anchoring pathway. In addition to maintaining genetic information, DNA replication may therefore regulate subnuclear organization of chromatin.
|
460 |
Phylogenetic diversity of fungal stress signaling pathwaysNikolaou, Elissavet January 2008 (has links)
No description available.
|
Page generated in 0.0918 seconds