• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 30
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 144
  • 144
  • 30
  • 29
  • 29
  • 20
  • 20
  • 20
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The influence of exogenously applied 'anti-stress' agents in the upregulation of the drought response in Iraqi wheat varieties

Kareem, Fakhriya Mohammed January 2017 (has links)
Bread wheat (Triticum aestivum L.) is one of the most important cereal crops grown in the world. It has great importance because it constitutes a major source of carbohydrate for more than one third of the world’s population (Budak et al., 2013). In the last three decades, drought conditions are becoming more widespread in wheat production areas including Europe, Australia and Asia, and it is considered a major cause of reduced wheat growth and productivity in most developing countries with semi-arid climates. Drought constitutes the most important threat for wheat production in Iraq and especially for the Kurdistan Regional Governate owing to the limited source of water during at least some part of the growing period. Because wheat is considered a staple food and has economic importance for the Kurdistan Regional Government research is needed to determine the production capacity of Iraqi wheat varieties under drought stress and the potential for the maximization of the drought tolerance response. The soil moisture holding capacity of the intended growing medium was measured gravimetrically in pots with and without wheat plants and correlated with the soil capacitance measured using a TDR Theta Probe (Delta-T Devices). This was used to determine the available water content of the soil (AWC) and to control and manage the watering regimes during drought studies. The results of a study of the response of different cultivars of Iraqi wheat (Triticum aestivum L.) to watering regimes of 70% and 50% showed that drought stress had a significant effect on the biomass and yield traits especially tiller number and stem bundle weight compared to normal conditions. The highest significant difference was observed for cv. Tamooz 2 in comparison to Adana 99, but there was a little difference between cvs. Rizgary and Sham 6. The effect of the exogenous application of salicylic acid (SA) and molybdenum (Mo) on drought tolerance of cvs. Tamooz 2 and Adana 99, showed that Tamooz 2 had higher values for growth characteristics and higher yield potential when sprayed with a lower concentration of SA (1.44 mM) under well-watered conditions in comparison with Adana 99. The effect of spraying variety Tamooz 2 with SA at different growth stages indicated that biomass production and yield components (the number of spikes/pot, grain dry weight and average 1000 grain dry weight) significantly increased at both stem+flower as well as leaf+stem+flower sprayings for plants subjected to drought. Also, SA treatments at stem extension and flowering had a positive effect on the up-regulation of the drought response gene CBF/DREB under drought stress conditions. These findings indicate that agronomic treatments with exogenous applications of salicylic acid and molybdenum could help to reduce the effects of drought in the field.
52

Redox regulation of salicylic acid synthesis in plant immunity

Li, Yuan January 2016 (has links)
Salicylic acid (SA) is essential to the establishment of both local and systemic acquired resistance (SAR) against a wide range of phytopathogens. Isochorismate synthase 1 (ICS1) is the key enzyme involved in the synthesis of SA and it is transcriptionally activated by the regulatory proteins SAR deficient 1 (SARD1) and Calmodulin binding protein 60g (CBP60g). It has been demonstrated previously that the loss-of-function mutant, S-nitrosogluthione reductase 1-3 (gsnor1-3), increased cellular levels of S-nitrosylation. Significantly, accumulation of both free SA and its storage form SA-glucoside (SAG), were substantially reduced, disabling multiple SA-dependent immune responses. However, the molecular mechanism underlying this observation remains to be established. Our data suggests that the transcription of ICS1 and it regulators, SARD and CBP60g, are reduced in the gsnor1-3 mutant, implying that increased cellular S-nitrosylation blunts the expression of ICS1 by reducing the transcription of its activators. We demonstrated that SARD1 is S-nitrosylated in vitro resulting in inhibition of its DNA binding activity. Further, Cys438 of SARD1 was found to be the site of S-nitrosylation, demonstrated by the observation that the SARD1 C438S mutant was insensitive to NO regulation in regard to DNA binding activity.
53

Estudo experimental e ajuste de modelos para previsão da solubilidade sólido-líquido no sistema ácido salicílico-etanol-água. / Experimental study for adjustment of prediction model of solid-liquid solubility in salicylic acid-ethanol-water system.

Maurício Mitsuo Uematsu 03 April 2007 (has links)
Para representar o equilíbrio existem modelos termodinâmicos empíricos e semi-empíricos, porém nenhum deles tem aplicação generalizada. Muitos dos modelos utilizados para o equilíbrio sólido-líquido advêm dos modelos desenvolvidos para o equilíbrio líquido-vapor (ELV) e, em alguns casos, podem não representar adequadamente os sistemas reais, tornando-se mais críticos os desvios quando o sólido, ou o líquido, ou ambos, são polares. Para o estudo dos modelos e realizar as devidas comparações foram inicialmente realizados experimentos em laboratório com sistemas binários e ternários utilizando como solventes o etanol, a água e as suas misturas e como soluto o ácido salicílico, todas substâncias polares. Os dados experimentais foram obtidos utilizando uma variante do método isotérmico, tendo como sistemas binários: etanol-ácido salicílico e água-ácido salicílico e, como sistemas ternários as misturas dos solventes. Os experimentos envolveram a variação da concentração mássica de etanol em intervalos de 20%. A variação da temperatura foi feita em intervalos de 5°C de 20 a 55°C. A análise do total de 48 dados experimentais indicou que a solubilidade do ácido salicílico aumenta à medida em que a temperatura e/ou a concentração mássica de etanol no solvente aumenta. Esses dados foram utilizados no ajuste de diferentes modelos para ESL. Os modelos estudados foram: UNIFAC e GSP (de predição baseado no ELV), UNIQUAC, Wilson, NRTL (semi-empíricos de ajuste de parâmetros baseados no ELV), Nývlt e \'lâmbda\'h (semi-empíricos de ajuste de parâmetros baseados no ESL) e Margules (empírico de ajuste de parâmetros). Os resultados mostraram que os modelos de predição têm aplicação restrita quando aplicado ao sistema estudado. Entre os modelos de ajuste, o UNIQUAC resultou em menores desvios em relação aos dados experimentais, considerando-se toda a faixa de condições experimentais adotadas. Os resultados experimentais também foram utilizados no ajuste de um modelo baseado em rede neural, o qual foi utilizado para mapeamento do sistema e comparação com as previsões pelos modelos considerados. Simulações com rede neural resultaram em boa concordância com os resultados experimentais, indicando que tal modelo pode ser usado para prever solubilidade na faixa de condições do presente estudo. / The knowledge of solid-liquid equilibrium (SLE) is an important factor in crystallization and dissolution studies. In most of these systems equilibrium is represented by empirical and semi-empirical thermodynamical models, with no general application. Many models used in SLE result from models developed for vapor-liquid equilibrium (VLE) and in some cases these models do not represent real systems adequately, becoming critical when polar solids or liquids are present in the system. In the present work a study of thermodynamical models for SLE was carried out by comparing the performance of different models with experimental data of binary and ternary systems consisting of ethanol, water and their mixtures as solvents, and salicylic acid as solute. The experimental data were obtained using a variant of the isothermal method for the following binary systems: ethanol-salicylic acid and water-salicylic acid. In the study with ternary systems ethanol-water mixtures at different ratios were adopted as solvents, and salicylic acid was the solute. A total of 48 experiments were carried out by changing the ethanol mass fraction in the solvent from 0 to 100%, and the temperature from 20 to 55°C. The solubility of salicylic acid increases with the increase in the temperature and/or ethanol concentration in the solvent. The models considered in the study were: UNIFAC and GSP (prediction models based on vapor-liquid-equilibrium), UNIQUAC, Wilson and NRTL (semi-empirical models of fitted parameters based on vapor-liquid equilibrium), Nývlt and \'lâmbda\'h (semi-empirical models with fitted parameters based on SLE) and Margules (empirical model with fitted parameters). The results showed that the UNIQUAC model with fitted parameters can describe the SLE with reasonable accuracy, while all other methods resulted in poor agreement with the system\'s behavior, with systematic deviations from the experimental results. The system was also mapped with the use of a neural network model with parameters fitted to the experimental data. Simulation results with the neural network provided an accurate map of the system that can be used within the range of conditions considered in this study.
54

Estudo espectroeletroquímico do ácido acetilsalicílico e ácido salicílico e suas interferências na absorção de ferro in vitro / Spectroelectrochemical study of acetylsalicylic acid and salicylic acid and its interference over iron absorption in vitro

Thiago Martimiano do Prado 14 September 2017 (has links)
Os comportamentos espectroeletroquímicos do ácido acetilsalicílico (AAS) e seu produto de hidrólise, o ácido salicílico (AS), foram estudados em soluções aquosas nas regiões de pH ácido, neutro e alcalino. Resultados para experimentos de voltametria cíclica sugeriram possíveis processos de eletro-oxidação e eletro-redução dos fármacos. O monitoramento do espectro de absorbância na região do UV-vis, simultâneo à medida de carga envolvida na eletrólise, permitiu a identificação de processos redox e o cálculo do número de elétrons envolvidos, aplicando a Lei de Faraday. O fármaco mostrou-se estável em pH ácido, reduziu em pH neutro e oxidou em pH alcalino. Tanto no processo de eletro-redução como na eletro-oxidação, os mecanismos propostos estabelecem o envolvimento de 1 elétron para a identificação de mudanças no nível molecular. Estas foram observadas pelas alterações de espectros de absorbância na região do UV-vis. Técnicas complementares, ressonância paramagnética eletrônica (RPE) e espectroscopia de transmitância FT-IR, foram usadas para a caracterização dos produtos obtidos em experimentos de eletrólise. As respostas espectrofotométricas associadas à processos eletroquímicos permitiram o desenvolvimento de método espectroeletroquímico para a detecção do fármaco em amostras reais contidas em soluções com pH neutro, utilizando a técnica de voltabsormetria derivada linear (DLVA). A interação entre os fármacos e íons de ferro no ambiente do estômago, foi simulada em experimentos in vitro, empregando eletroquímica e espectrofotometria. Na presença do AAS ocorreram interações fracas sem a interferência para a absorção de ferro pelo organismo. Em contrapartida, o AS interagiu formando um complexo estável com o Fe3+, podendo ser apontado como um potencial interferente para a absorção de ferro provocando anemia em indivíduos vegetarianos que fazem uso contínuo deste fármaco. / The spectroelectrochemical behavior of acetylsalicylic acid (ASA) and its spin off hydrolysis, salicylic acid (SA), were studied in aqueous solutions in the acid, neutral and alkaline pH regions. Results for cyclic voltammetry experiments suggested a possible electro-oxidation and electro-reduction of the drugs. The monitoring of the absorbance spectra in the region of the UV-vis, simultaneously with the measurement of the charge involved in the electrolysis, allowed the identification of redox processes and the calculation of the number of electrons involved applying Faraday\'s Law. The drug was stable in acid solutions, reduced in neutral and oxidized in alkaline ones. In electro-reduction and electro-oxidation processes, the proposed mechanisms establish the involvement of 1 electron to identify changes at the molecular level. These were observed by changes in absorbance spectra in the UV-vis region. Complementary techniques, electronic paramagnetic resonance (EPR) and FT-IR transmittance spectroscopy were used to characterize the products obtained in electrolysis experiments. The spectrophotometric responses associated to the electrochemical processes allowed the development of a spectroelectrochemical method for the detection of the drug in real samples contained in solutions with neutral pH, using the technique of derivative linear voltabsorptometry (DLVA). The interaction between drugs and iron ions in the stomach environment was simulated in in vitro experiments using electrochemistry and spectrophotometry. In the presence of ASA, weak interactions occurred without interference for the absorption of iron by the organism. On the other hand, AS interacted to form a stable complex with Fe3+ and could be considered as a potential interfering agent for the iron absorption, causing anemia in vegetarian individuals who make continuous use of this drug.
55

Salicylic acid-mediated potentiation of Hsp70 in tomato seedlings is modulated by heat shock factors

Snyman, Marisha 20 August 2012 (has links)
Ph.D. / In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses such as systemic acquired resistance (SAR) and the hypersensitive response (HR), and has been implicated in both basal and acquired thermotolerance. It has also been shown that SA enhances heat-induced Hsp/Hsc70 accumulation in plants. In this study, temperature studies revealed that heat shock (HS) at 40 °C for 30 min significantly induced Hsp/Hsc70 accumulation in 3-week old tomato (UC82B) seedlings. Time- and dose-responsive studies showed that 0.1 mM SA for 17 hrs was unable to induce Hsp/Hsc70 but in combination with HS significantly (P > 0.001) potentiated this response. To investigate the mechanism of SA-mediated, heat-induced Hsp/Hsc70 potentiation, tomato seedlings were treated with either SA alone, HS or both, before analyses of hsp70 mRNA, Hsf DNA-binding and gene expression of hsp70, hsfAl, hsfA2 and hsfEll. SA alone established Hsf DNA-binding, but was not accompanied by increased Hsp70 accumulation or expression of hsp70 mRNA. SA had no significant effect on hsfA2 and hsf81 gene expression, but increased the basal levels of hsfAl. In heat-shocked plants, Hsf DNA-binding was enhanced, and increased hsfAl, hsfA2 and hsfB1 expression preceded accumulation of Hsp70. The combined treatment of SA and HS resulted in potentiated Hsf DNA-binding, enhanced expression of hsp70, hsfAl, hsfA2 and hsfB1, leading to potentiated levels of Hsp/Hsc70. Since increased hsp70 and hsf gene expression coincided with increased levels of Hsp70 accumulation, it is likely that the SA-mediated potentiation of Hsp70 is due to the ability of SA to regulate Hsfs during HS. This study therefore proposes a mechanism for the potentiation of Hsp70 by SA in the presence of heat, which might contribute to our understanding of the role SA plays in the heat shock response and thermotolerance.
56

Rust and drought effects on gene expression and phytohormone concentration in big bluestem

Frank, Erin January 1900 (has links)
Master of Science / Department of Plant Pathology / Karen A. Garrett / While plants are typically exposed to multiple stressors in the field, studies of genome-wide gene expression and phytohormone responses in wild plant species exposed to multiple stressors are rare. Our objectives were to determine the effects of drought and rust stress on gene expression in Andropogon gerardii, the dominant grass in tallgrass prairie, and associated levels of phytohormone production. In a factorial design, plants experiencing drought or non-drought conditions were either inoculated with the rust pathogen Puccinia andropogonis or not inoculated. Gene expression was evaluated with maize microarrays. Drought-stressed plants significantly decreased expression of genes associated with photosynthesis and the hypersensitive response, while expression of genes associated with chaperones and heat-shock proteins increased. No significant differences in gene expression in response to the rust treatment were detected using a mixed model analysis of variance and false discovery rate protection, probably because of the low infection rate. Phytohormone production increased when both stresses were present. The rust treatment significantly increased benzoic acid (BA) production in the presence of drought, while the drought treatment alone significantly increased salicylic acid (SA) production. Leaf tips usually had higher levels of all phytohormones in all treatments and the leaf section evaluated had a larger effect on phytohormone level than did the treatments applied.
57

Salicylic acid and Hsp70: partners for inducing apoptosis in breast cancer cells?

Ferreira, Eloise 16 May 2011 (has links)
M.Sc. / Breast cancer is the most commonly diagnosed cancer and cause of death in women world wide as well as in South Africa. Cancer is characterized by over-proliferation of cells or the inhibition of programmed cell death known as apoptosis, a well coordinated process that results in the activation of several proteases and other hydrolytic enzymes. Apoptosis is regulated by enhancers and inhibitors, such as heat shock proteins (Hsps) that modulate the apoptotic process according to the demands of specific cells. Hsps can regulate the release of pro-apoptotic factors from the mitochondria as well as inhibit key steps in the apoptotic cascade such as activation of caspases. The Hsp70 family constitutes the most conserved and best studied class of Hsps and the stress-induced Hsp70 also blocks the apoptotic pathway at different levels. Hsp70 is furthermore overexpressed in several tumor cells and can effectively inhibit cell death induced by a wide range of stimuli including several cancer related stresses such as hyperthermia, chemotherapeutic agents and nonsteroidal anti-inflammatory drugs (NSAIDs) i.a. aspirin (acetylated salicylic acid) In addition to their potent analgesic, antipyretic and anti-inflammatory activity, NSAIDs can inhibit cell proliferation and induce apoptosis in many cancer cell lines. However, NSAIDs can also lower the temperature threshold for Hsp70 induction and induce a transcriptionally inert intermediate of Hsp70 that can be converted to a transcriptionally active state by a subsequent exposure to heat shock. This suggests that NSAIDs act differently under heat stress, possibly increasing cellular protection through the heat shock response in cancer cells with already elevated levels of Hsps. It is therefore hypothesized that the synergistic use of heat shock with salicylic acid (SA) treatment will increase Hsp70 expression and protein accumulation and further enhance the resistance of breast cancer cells to apoptosis. The effects of SA on its own or in combination with HS on the viability of MCF-7 breast cancer cells as well as Hsp70 protein levels and gene expression were therefore investigated. SA treatments were found to induce cell death in a dose-dependent manner with the most significant decrease in viability observed after treatment with 20 mM SA.
58

The Syntheses of Amino Substituted Salicylic Acids and Related Compounds

Gerber, Martin January 1949 (has links)
The introduction of the ether linkage into various compounds imparts physiological activity, hence the synthesis of various ether derivatives involving the phenol group seemed to be a possible route to tuberculostatic substances. The compounds reported in this work are to be tested for tuberculostatic properties by Parke, Davis and Company.
59

Release of salicylic acid from lanolin alcohol-ethyl cellulose films

Khan, Arshad Rahim 01 January 1980 (has links)
In the present study lanolin alcohol films were investigated as potential drug delivery systems for the controlled release of salicylic acid. A series of experiments were conducted in vitro to study the release of salicylic acid from these films. The effect of changes in film composition and stirrer speed on drug release were examined. Seven film compositions with varying proportions of lanolin alcohol and ethyl cellulose were prepared over the ethyl cellulose concentrations of 0-30% w/w, while keeping the drug concentration at 2.5% w/w. The release data obtained in this study were examined by the Q vs 1/2 relationship and the first-order relationship. This was done to probe deeper into the underlying mechanism of drug release. Upon examination of the release data by the Q vs 1/2 treatment, it was observed that the correlation coefficients were quite high and lag times were only slightly negative in agreement with the observed initial release data. In contrast, the first-order treatment of data showed somewhat lower correlation coefficients and very high negative lag times. These data strongly suggest that the unidirectional release of salicylic acid from the lanolin alcoholethyl cellulose films follows Higuchi's diffusion-controlled granular matrix model. The release rate constant showed an initial increase with inclusion of ethyl cellulose followed by a sharp decline as the ethyl cellulose concentration was further increased reaching a minimum value at about 15-20 percent of ethyl cellulose. Further increases in the concentration of ethyl cellulose increased the rate of drug release with a tendency to level off at about 30 percent ethyl cellulose concentration. The effect of stirring rate on the release rate constant showed that the rates of release of salicylic acid increased with increases in the stirring rate.
60

Metabolic Signals in Systemic Acquired Resistance

Rekhter, Dmitrij Aleksandrovic 08 May 2019 (has links)
No description available.

Page generated in 0.0425 seconds