Spelling suggestions: "subject:"salinity"" "subject:"alinity""
311 |
Response of wheat (Triticum aestivum L.) and barley (Hordeun vulgare L.) to salinity stressBagwasi, Gaesejwe 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Good quality water for agricultural use is rapidly becoming a luxury due to competition for this water among the municipal, industrial and agricultural sectors. This has often forced growers to use poor quality water for irrigation. Salinity is one of the main sources of poor water quality and high electrical conductivities (EC’s) due to salinity may become a problem. The aim of this study was to compare the response of South African spring wheat and South African spring barley at germination, seedling growth, vegetative growth, reproductive growth and maturity stage to salinity stress caused by irrigation with saline water. This study was conducted in the laboratory and under controlled glasshouse conditions at the University of Stellenbosch in the Western Cape Province of South Africa.
Treatments in trial 1 (incubation trial) were made up of three wheat cultivars (SST 027, SST 056 and SST 087) and three barley cultivars (Nemesia, Erica and Hessekwa) exposed to five EC levels of NaCl solutions (4, 8, 12, 16 and 20 dS m-1) and a control (0 dS m-1) of distilled water, during the germination phase. In trial 2 (pot trial), wheat cultivar SST 027 and barley cultivar SVG 13 were also subjected to the above solutions, but plants were grown till the tillering stage. In trial 3 (pot trial) cultivars used in trial 2 were subjected to five nutrient solutions with EC levels of 1.6, 3, 6, 9 and 12 dS m-1 and allowed to grow till maturity (harvesting stage). Fully balanced nutrient solution with EC = 1.6 dS m-1 was used as a control and NaCl was added to the solutions to obtain the needed EC.
In trial 1, final germination percentage (FGP), salt tolerance (ST) and germination rate (GR) were measured at 7 days after incubation. The study showed that when the EC level was increased, FGP, ST and GR of all wheat and barley cultivars tested were decreased. However, significant reduction was only observed at high EC levels with regard to FGP and ST. Wheat cultivars recorded faster GR compared to barley cultivars and tended to be less sensitive to salinity in the germination stage. Cultivars from the same species did not show significant differences. In trial 2, shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW) and root dry weight (RDW) were measured at 35 days after planting (DAP). In general, the study showed that salinity had a significant (P0.05) effect on seedling growth of all measured parameters of both wheat and barley. Mean values for most growth parameters were higher for barley cultivar SVG 13 as compared to wheat cultivar SST 027. However, little evidence was found to show that barley is more salt tolerant than wheat at the seedling stage. In trial 3, selected growth parameters were measured at tillering (28 DAP), booting (54 DAP), flowering (71 DAP) and maturity stage (150 DAP).
The study showed that salinity had a significant (P0.05) effect on the vegetative growth, reproductive growth and grain yield of both wheat and barley. Although barley generally produced higher dry weights especially at the early growth stages no clear evidence was found that South African spring barley is more salt tolerant than South African spring wheat. / AFRIKAANSE OPSOMMING: Besproeiingswater met ‘n goeie kwaliteit vir landboukundige gebruik word vinning baie skaars weens kompetisie, a.g.v menslike en industriële gebruik. Produsente word dus dikwels gedwing om water met ‘n swak kwaliteit te gebruik vir besproeiing. ‘n Hoë sout inhoud (brakwater) soos gemeet deur ‘n hoë elektriese geleidingsvermoë (EC), mag dus ‘n problem wees. Die doel van hierdie studie was om te bepaal hoe Suid Afrikaanse lente koring en gars gedurende ontkieming asook saailing-, vegetatiewe-, reproduktiewe- en rypwordingstadiums reageer teenoor soutstremming wat veroorsaak is deur besproeiing met brakwater. Die studie is uitgevoer in laboratoriums en onder gekontrolleerde glashuistoestande by die Universiteit van Stellenbosch in die Weskaap Provinsie van Suid Afrika.
Behandelings in die eerste proef (inkubasie studie) het bestaan uit drie koring kultivars (SST 027, SST 056 en SST 087) en drie gars kultivars (Nemesia, Erica en Hessekwa) wat tydens ontkieming benat is met vyf NaCl-oplossings met EC waardes van 4, 8, 12, 16 en 20 dS m-1 onderskeidelik, asook ‘n kontrole met gedistilleerde water (0 dS m-1). In die tweede proef is die koring kultivar, SST 027 en die gars kultivar SVG 13 in ‘n potproef ook aan bogenoemde oplossings blootgestel maar toegelaat om tot die stoelstadium te ontwikkel. In die derde proef is genoemde twee kultivars besproei met vyf voedingsoplossings met EC-waardes van 1.6, 3, 6, 9 en 12 dS m-1 en toegelaat om tot oesstadium te ontwikkel. ‘n Volledig gebalanseerde voedingsoplossing met EC = 1.6 dS m-1 is as kontrole gebruik en NaCl is by ander oplossings gevoeg om die verlangde EC te verkry.
In die eerste proef waar die finale ontkiemingspersentasie (FOP), sout toleransie (ST) en ontkiemingstempo (OT) na 7 dae gemeet is, is gevind dat FOP, ST en OT van al die koring en gars kultivars wat getoets is, met toenemende EC gedaal het. Statisties betekenisvolle afnames in FOP en ST is egter slegs by hoë EC waardes waargeneem. Koring kultivars het vinniger ontkiem as gars kultivars en was geneig om meer tolerant teenooor sout stremming te wees vergeleke met gars. Verskille tussen kultivars van dieselfde spesie was egter weglaatbaar klein. In die tweede proef waar plante toegelaat is om te groei tot die stoelstadium (35 dae na plant) is al die gemete planteienskappe (stingel- en wortellengte, asook vars en droë massas van stingels en wortels) van beide gars kultivar, SVG 13 en koring kultivar, SST 027, betekenisvol verlaag deur ‘n toename in EC van die besproeiingswater. Hoewel gars ten opsigte van die meeste gemete eienskappe groter gemiddeldes as koring getoon het, is weinig bewys gevind wat daarop dui dat die getoetsde gars kultivar SVG 13 meer souttolerant is as die koring kultivar SST 027.
In die derde proef waar dieselfde koring en gars kultivars vanaf plant tot oestyd besproei is met genoemde voedingsoplossings en metings tydens stoelstadium (28 dae na plant), stamverlenging (54 dae na plant), blomstadium (71 dae na plant) en oesrypstadium (150 dae na plant) gedoen is, is alle gemete vegetatiewe-, reproduktiewe- en opbrengskomponente van beide spesies verlaag deur die soutstremming. Hoewel gars ook in hierdie proef veral gedurende vroeë groeistadiums groter droë massas as koring geproduseer het, is geen konkrete bewyse gevind wat daarop dui dat die getoetsde Suid Afrikaanse lente gars kultivar SVG 13 meer sout tolerant is as die koring kultivar SST 027.
|
312 |
The effects of rainfall on temperature and salinity in the surface layer of the equatorial PacificBahr, Frederick L. 19 July 1991 (has links)
Measurements of temperature and salinity in the upper 5 m of the ocean
along the equator showed cool fresh anomalies due to rain showers. The
measurements were made between 140 W and 110 W during April 1987, an
El Nino year. The eastern equatorial Pacific was characterized by weak winds
(3 m/s average), high rainfall (1.6 cm/day), and warm surface temperatures
(28.4 C). Measurements of temperature were made from a catamaran float
at 0.5 and 1 m depth and at 5 m depth from the ship. Salinity was measured
at a depth of 1 m from the float and 5 m from the ship. The float was towed
off of the port side of the ship outside of the bow wake. Near-surface low
temperature and low salinity anomalies due to cool rainfall were encountered.
These anomalies were on average cool and fresh by 0.02 C and 0.2 PSTJ
with maximum values of 0.5 C and 1.6 PSU. The horizontal extent of the
anomalies ranged from less than 10 to more than 100 km. Rainfall depths
estimated from salt conservation agreed roughly with shipboard rain-gauge
measurements. The characteristic lifetime of the anomalies, estimated from
the ratio of the average rain depth to average rain rate, was about 10 hrs.
Rainfall temperatures were computed from the T-S mixing curves for three
large, newly-formed anomalies. The average rainfall temperature was 21 C.
Ocean buoyancy fluxes estimated for intense rain showers were an order of
magnitude larger than the fluxes in the absence of rain. / Graduation date: 1992 / Best scan available for p.15-16, 35. Original is a black and white photocopy.
|
313 |
Actinomycetes and fungi associated with marine invertebrates: a potential source of bioactive compoundsMahyudin, Nor Ainy January 2008 (has links)
Actinomycetes and fungi were successfully isolated from both New Zealand and Malaysian marine invertebrates and classified as facultatively marine based on their ability to grow on both sea water and non-sea water media. Most of the extracts obtained from selected isolates were cytotoxic. A clear preference of the actinomycetes for solid-state fermentation was observed, however, for fungi no significant preference was seen. Three isolates of Streptomyces spp., four Penicillium spp. and two Paecilomyces spp. whose extracts showed good cytotoxicity were selected for further investigation. A small-scale extract obtained from a solid culture of Streptomyces sp. (LA3L2) showed good cytotoxicity and a new cytotoxic metabolite was isolated from a large-scale extract of Streptomyces sp. (LA3L2). This metabolite was characterized as S-methyl 2,4-dihydroxy-6-isopropyl-3,5-dimethylbenzothioate (5.15) and is only the third compound reported to contain the S-methyl benzothioate group. Two known compounds, montagnetol (5.16) and erythrin (5.18), were isolated from a further large-scale cultivation of Streptomyces sp. (LA3L2) and is the first reported actinomycete to produce these lichen-related compounds. In addition, two known inactive metabolites (bohemamine (5.1) and bohemamine B (5.2)) were identified from the small-scale extract. Streptomyces sp. (LA3L2) was also investigated for the effect of temperature and salinity on growth and cytotoxicity and shown to produce bohemamine only at 20 - 28℃ and 4% sea salt concentration on solid media. This isolate gave a low yield of active metabolite under all conditions. Small-scale extracts of two other Streptomyces spp. yielded three known cytotoxic metabolites. These were thiazostatin B (7.14) from Streptomyces sp. (LA5L4) and chromomycin A2 (7.1), chromomycin A3 (7.2) and chromomycin 02-3D (7.3) from Streptomyces sp. (LA3L1). All four Penicillium spp. produced known metabolites. Penicillium sp. (LY1L5) yielded two known metabolites, cycloaspeptide A (7.4) and α-cyclopiazonic acid (7.5). α-Cyclopiazonic acid (7.5) and three other known metabolites (roquefortine A (7.6), cyclopeptin (7.7) and viridicatin (7.8)) were isolated from Penicillum sp. (KK3T23). Penicillium sp. (KK3T8) produced brefeldin A (7.10), while mycophenolic acid (7.12) and brevianamide A (7.11) were produced by Penicillium sp. (KK4T14b). The effect of salinity on growth and cytotoxicity was investigated for the two Penicillium isolates producing the cytotoxic metabolite, α-cyclopiazonic acid (7.5). Saline conditions were not required for growth but metabolite production differed between the two isolates with respect to salinity. Isolate LY1L5 required saline conditions for α-cyclopiazonic production whereas isolate KK3T23 produced the metabolite under non-saline conditions and in concentrations of sea salt up to 6%. Three known compounds, indole-3-carboxylic acid (7.15), indole-3-carboxylate (7.17) and 5-carboxymellein (7.16) were identified from Paecilomyces sp. (PR5L9). Investigation of a small-scale extract obtained from a solid culture of another Paecilomyces sp. (PR10T2) resulted in the isolation and characterization of a unique structure of a symmetrical cyclic depsipeptide, epi-angolide (NAM 6-1). NAM 6-1 was considered as a new compound based on four homoisomeric configurations (A1, A2, A3 and A4). The value of dereplication procedures with respect to the rapid identification of metabolites and enhancement of in-house metabolite libraries is discussed. Structural elucidation of nine known metabolites (7.1, 7.2, 7.3, 7.5, 7.6, 7.7, 7.8, 7.10 and 7.11) was greatly aided by the in-house dereplication techniques using LC-MS-UV and AntiMarin database. A significant advantage was gained by the use of the CapNMR which enabled NMR characterization of very small quantities of metabolites (<20 µg). Approximately <5 µg of materials were required to perform 1D proton NMR experiments for the dereplication of seven known compounds; bohemamine (5.1), bohemamine B (5.2), thiazostatin B (7.14), indole-3-carboxylate (7.17) and 5-carboxymellein (7.16). Approximately 20 µg of materials were needed to acquire 1D and 2D (HSQC, HMBC and NOE) NMR spectra for structural elucidation of the new metabolite, S-methyl 2,4-dihydroxy-6-isopropyl-3,5-dimethylbenzothioate (5.15). Some 8 µg of materials were sufficient to perform 1D and 2D (COSY, HSQC and HMBC) NMR experiments for complete structural characterization of two known metabolites, montagnetol (5.16) and erythrin (5.18). Approximately 10 µg of materials were needed to acquire 1D and 2D NMR (COSY, HSQC and HMBC) experiments for structural elucidation of the new compound, epi-angolide NAM 6-1 (A1, A2, A3 and A4). Rapid identification of known fungal metabolites enabled the in-house HPLC-UV/Rt library to be enhanced by eight metabolites (7.5, 7.6, 7.7, 7.8, 7.10, 7.11, 7.17 and 7.16). An HPLC-UV/Rt library for actinomycete metabolites was successfully established with the insertion of eight known metabolites (5.1, 5.2, 5.16, 5.18, 7.1, 7.2, 7.3 and 7.14).
|
314 |
Salinity Management and Soil Amendments for Southwestern Pecan OrchardsWalworth, James, Thompson, Thomas L. 07 1900 (has links)
4 pp. / Managing salts in Southwestern pecan orchards can be a major challenge for growers, due to limited soil permeability and/or low-quality irrigation water.
|
315 |
Evaluation of agricultural adjustment to irrigation water salinity : a case study for Pinal County, ArizonaBoster, Mark Alan,1948- January 1976 (has links)
The Central Arizona Project (CAP) is a billion-dollar-plus project to construct an aqueduct to transport water from Lake Havasu on the Colorado River into the Maricopa County-Phoenix area and then through Pinal County to Tucson. Upon completion of CAP in 1986, some of the Colorado River water will be delivered to Pinal County for agricultural use. Water available to Pinal County farmers in the initial years of the project is estimated at 659,000 acre-feet annually. Any new importation of water to an established irrigated agricultural area implies adjustments in the organization of the economy of the area. For irrigated agriculture, adjustments will occur in input mix, output mix, acreage farmed, and in gross and net incomes. A complicating factor associated with importation of Colorado River water is that the imported water will contain different dissolvedsalt concentrations than will the groundwater and surface water currently being used. Dissolved salts in irrigation water (salinity) decrease crop yields, i.e., as the salinity of water applied to a crop increases, yield per acre decreases. The magnitude of yield reduction due to salinity is dependent on the level of salinity of the irrigation water and on the crop's salt sensitivity. In areas of Pinal County where local water supplies have a lower average salinity than CAP water, average crop yields will decrease if CAP water is added to the crop-water mix. On the other hand, in those areas where the salinity of local water is higher than that of CAP water, higher crop yields will be realized by using CAP water in the crop-water mix. Thus, the optimal CAP-local water mix is determined in order to evaluate the economic adjustments of Pinal County farmers to the new water source. Pinal County is divided into seven irrigation districts, each of which has filed a letter of intent to purchase CAP water. Representative farm data for each district are stratified by farm size and pumping depth. Farms are divided into four size classes in order to reflect economies due to farm size. Because the cost of local pumped water varies with the pumping lift, the farms are also stratified by three depth-to-water classes. Thus, a total of 12 representative farms are necessary to describe the agricultural activities in each irrigation district, and 84 representative farms are needed for the county. Mathematical programming models of representative irrigated farms in Final County project adjustments implied under several assumptions as to the availability, cost and salinity of irrigation water from various sources. Results show that (1) most monetary benefits of the project will be captured by the Indian farmers of the county, (2) groundwater conservation will be minimal unless farmers are forced to purchase large quantities of CAP water, (3) provision of CAP water will not affect cotton acreage but will significantly increase the acreage of small grains and alfalfa, (4) the possibility of increased salinity from CAP water should not concern farmers in the county since projected decreases in net income occurring because of increased salinity average only 61 cents per acre per year, and (5) increased income to non-Indian farmers resulting from provision of CAP water at the currently proposed price will not be sufficient to pay the additional fixed costs for distribution systems.
|
316 |
Monitoring Spatial and Temporal Changes of Agricultural Lands in the Nile Delta and their Implications on Soil Characteristics Using Remote SensingHereher, Mohamed El-Desoky January 2006 (has links)
Egypt witnesses an increasing population growth concomitant with limited water and agricultural land resources. The objectives of this study were to utilize remotely sensed data for the inventory of agricultural lands in the Nile Delta, monitoring spatial and temporal variations in agricultural lands and quantifying agricultural land losses due to urbanization. Inventory of agricultural lands was designed using two approaches: thresholding and linear mixture analysis. We utilized 12 images from the Landsat satellite: 4 from Multi-Spectral Scanner (1972), 4 from Thematic Mapper (1984) and 4 from Thematic Mapper (2003) covering the entire Nile Delta. In addition, a set of 480 NDVI images were obtained from the Advanced Very High Resolution Radiometer (AVHRR) sensor that cover the period 1984-2003. Landsat images were subjected to atmospheric, radiometric and geometric corrections as well as image mosaicking. Normalized Difference Vegetation Index (NDVI) was applied and thresholding for agricultural land cover revealed that the areal extent of agricultural lands was 3.68, 4.32 and 4.95 million acres (one acre = 0.96 Egyptian Feddan) in 1972, 1984 and 2003, respectively. Linear mixture analysis of the AVHRR-NDVI with the TM-NDVI images showed that agricultural lands approached 4.11 and 5.24 million acres in 1984 and 2003, respectively. Using multitemporal Principal Component Analysis (PCA) for the TM and AVHRR images proved that reclamation activities were mostly along the western margins of the Nile Delta. Spatio-temporal analysis showed that middle delta has the highest agricultural vigor compared with the margins. Agricultural land loss was estimated in some cities within the delta as well as in Greater Cairo area. We studied the land cover classification and change in Greater Cairo area based on 5 Landsat images acquired in 1972, 1984, 1990, 1998 and 2003. Agricultural lands lost 28.43% (32,236 acres) between 1972 and 2003 with an annual loss of 1040 acres. Agricultural lands on the peripheries of Cairo and its satellite towns were the most vulnerable areas. Soil salinization was another limiting factor for land reclamation. The main conclusion confirms that remote sensing is an accurate, efficient and less expensive tool for the inventory and monitoring agricultural land change in Egypt.
|
317 |
Effects of Salinity on the Water Potential of Alfalfa SeedlingsMcKimmie, T., Dobrenz, A. K. 09 1900 (has links)
Alfalfa seedlings were grown under saline conditions for six weeks and separated into two populations, based on height. Water potential was measured on roots, stems, leaves, and petioles of tall and short plants. Tall plants had a higher water potential for each plant part.
|
318 |
The Effects of Alfalfa Seed Scarification in Saline EnvironmentsPoteet, D. C., Robinson, D. L., Dobrenz, A. K., Smith, S. E. 09 1900 (has links)
The handling of alfalfa and other crop seed may result in seed scarification. Scarification may not affect germination of alfalfa seed in a non - saline environment, but may decrease germination where farmer's fields are severely salt-stressed.
|
319 |
Salinity X Temperature Interactions on Germination Salt Tolerant AlfalfaReffruschinni, K., Poteet, D., Dobrenz, A., Cox, J. 09 1900 (has links)
Continued irrigation with saline water on Arizona's already salty farm lands will increase the need for crops that are able to maintain yields under stress. We investigated responses of gemùnation salt- tolerant alfalfa (Medicago sativa L.) to salt and temperature stress interactions in comparison to Mesa - Sirsa. Significant interactions were found for the populations, salts and temperatures and their effects on percent germination. The germination salt - tolerant cycles proved to be more cold and heat tolerant under salt stress then Mesa - Sirsa.
|
320 |
Production of the Forage Halophyte Atriplex lentiformis on Reverse Osmosis BrineSoliz, Deserié H. January 2011 (has links)
Throughout the arid and semi-arid regions, researchers have been looking at different ways to deal with the salinity problem of the soil and water as well as feed for the livestock. Study 1 focused on a pilot project conducted in an irrigation district in Marana, AZ, USA, looking at using Reverse Osmosis (RO) concentrate on Atriplex lentiformis (quailbush) and then harvesting the plant to be tested for its possible use as a supplement in feed for livestock. Three irrigation treatments were tested based on the potential evapotranspiration rate (ET(o)): (1) plots irrigated at ET(o) adjusted daily via an on-site micrometeorology station; (2) plots irrigated at 1.5 ET(o) adjusted daily; (3) plots irrigated at a constant rate throughout the year based on the mean of annual ET(o). The plants produced 15-24 tons ha⁻¹ year⁻¹ of biomass and could be irrigated at the rate of ET(o), ca. 2 m yr⁻¹ at this location. It was concluded that irrigation of halophyte forage crops provide a viable strategy for extending water supplies and disposing of saline water in arid-zone irrigation districts. Study 2 focused on a field data from Study 1 and two greenhouse experiments. The greenhouse experiments were conducted in 2007 and 2010. The 2010 greenhouse trials, under well-watered conditions, showed that the apparent zero-point-salinity for yield was 47.3 g L⁻¹ TDS. An additional greenhouse experiment was conducted in which plants in sealed pots were grown to the wilting point on a single application of water. The experiment was conducted at different salinities to see if salinity and water stress were additive factors in reducing yield and Water Use Efficiency (WUE). To the contrary, yield and WUE actually increased as a function of salinity, perhaps due to conversion from C3 to C4 photosynthesis over the salinity range (noted in other studies with A. lentiformis). We conclude that xerohalophytes such as A. lentiformis could greatly extend the useful range of salinities under which forage crops can be grown in arid-zone irrigation districts.
|
Page generated in 0.0522 seconds