• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 20
  • 13
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 76
  • 46
  • 28
  • 23
  • 19
  • 17
  • 17
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Plasticity of adult sympathetic neurons following injury

Walker, Ryan G. 14 August 2009 (has links)
No description available.
82

Serum-free media development using black soldier fly protein isolate and hydrolysate for cultivated meat

Garg, Palak 03 January 2024 (has links)
The global demand for animal proteins is projected to rise by 14% by 2030, amplifying the environmental toll of conventional animal-based protein production. Cultivated meat technology can alleviate the growing demand for protein and address the environmental and ethical concerns associated with conventional livestock farming. However, it faces a critical challenge: the high cost of cell culture media, primarily due to the use of Fetal Bovine Serum (FBS). Substituting serum with protein hydrolysates reduces the production expense of cultivated meat products and promotes establishing a sustainable food system. This study explores black soldier fly larvae (Hermetia illucens) as an emerging ethical and cost-effective alternative protein source to replace serum in media, particularly for cultivated meat production. The development of BSFL protein isolate involved defatting the larva, followed by protein extraction. The protein isolate was then hydrolyzed using an enzyme to produce BSFL hydrolysates. The goal was to supplement the protein isolate and hydrolysates with a serum-free media (B8) and determine their efficacy in replacing the 20% serum requirement for the cell culture of Bovine Satellite Cells. The BSFL protein isolate developed had a crude protein content of 80.42% and an amino acid composition conducive to cell proliferation. Experimental concentrations, ranging from 0.006 mg/ml for hydrolysate to 0.06 mg/ml for protein isolate, exhibited enhanced cell growth. Data from dsDNA quantification revealed no significant difference in growth between cells fed serum-containing growth media (BSC-GM) and BSFL protein hydrolysate (BSFLH_1h) over a short-term study. Results from the multi-passage growth study revealed that BSFLH_1h significantly improved cell growth compared to B8 over 4 passages. However, its doubling time was slower than BSC-GM. Additionally, it was observed that the protein isolate and hydrolysate were cytotoxic at higher concentrations. In the future, identifying and removing the cytotoxic compounds can further optimize the media composition. Immunostaining using Pax7 and DAPI identified supplemented media-maintained satellite cell identity of Bovine satellite cells, offering crucial insights into cellular proliferation. Furthermore, since each cell type requires varying serum and nutrients, testing these isolates and hydrolysates on different cell lines can provide better insight into creating a universal serum-free media. / Master of Science in Life Sciences / The global demand for animal proteins is projected to rise by 14% by 2030, amplifying the environmental toll of conventional animal-based protein production. Meat, dairy, aquaculture, and eggs significantly contribute to food-related emissions and occupy a vast portion of global farmland. Cultivated meat production can alleviate the growing demand for protein and address the environmental and ethical concerns associated with conventional livestock farming. Currently, the production of cultivated meat faces a significant hurdle: the high cost of culture media, primarily attributed to the use of Fetal Bovine Serum (FBS). Substituting serum with protein isolates or hydrolysates reduce the production expense of cultivated meat products and promotes a sustainable food system. Protein isolate and hydrolysates derived from black soldier fly larvae (Hermetia illucens) are rich in protein and essential amino acids and can be used as a cost-effective alternative to serum in cell culture media. The protein isolate and hydrolysates derived from BSFL were tested as supplements to a serum-free media (B8) to evaluate their effectiveness in supporting the growth of Bovine Satellite Cells. The protein hydrolysate demonstrated enhanced cell growth at experimental concentrations. However, it could not completely replace serum requirements without slowing cell growth. Despite challenges such as cytotoxicity at higher concentrations, our study suggests that further refinements and application on various cell types can assist in creating a sustainable and affordable serum-free media for cultivated meat production.
83

The Regulation of Human Muscle Stem Cells in Response to Muscle Damage and Aging

McKay, Bryon R. 10 1900 (has links)
<p>Skeletal muscle exhibits a remarkable capacity for growth and regeneration in response to physiological stimuli. This extensive plasticity is, in part, due to a tissue-resident stem cell called the satellite cell. Satellite cells respond to myotrauma by upregulating a class of transcriptional networks which orchestrate myogenic specification. This process is controlled by four main transcription factors known as the myogenic regulatory factors: Myf5, MyoD, MRF4 and Myogenin. Satellite cells respond to molecular cues released from the muscle fiber or inflammatory cells in response to muscle damage. Although several regulators have been implicated in the control of the satellite cell response to exercise or damage, very few of these have been examined in humans. Insulin-like growth factor-1 (IGF-1) and Interleukin-6 (IL-6) have been demonstrated to enhance satellite cell proliferation in animal and cell culture models. IGF-1 has also been shown to induce myogenic differentiation, however little is known about IGF-1 and IL-6 in humans, in response to physiological levels of muscle damage. Myostatin has been identified as a negative regulator of muscle growth and an inhibitor of satellite cells in mice. To date no data exists regarding the relation of myostatin to the satellite cell response to exercise and in the context of aging. The work outlined in this thesis provides support for the proposed divergent effects of the IGF-1 splice variants on satellite cell function. IGF-1 appears to be preferentially spliced as IGF-1Ec during the proliferative phase of the myogenic program while IGF-1Ea and Eb appear as the predominant splice variants during the initiation of differentiation based on the expression of the MRFs. Furthermore, the localization of IGF-1 with Pax7 in muscle-cross sections in the post-exercise time-course lends support to the importance of IGF-1 in the myogenic response to myotrauma. This thesis also provides novel evidence to support the role of IL-6 in the regulation of satellite cell proliferation in response to acute muscle damage in humans. These data confirm that IL-6 imparts its action on the satellite cell via the JAK2/STAT3 pathway. In addition, for the first time, myostatin is demonstrated to be altered by acute exercise in both young and older adults and this effect is most notable in the satellite cell compartment. In addition, these data implicate myostatin as a contributing factor to age-related satellite cell dysfunction in response to exercise (or myotrauma).</p> / Doctor of Philosophy (PhD)
84

Activation of Satellite Cells Following Eccentrically-Biased Exercise in Humans

O'Reilly, Ciara E. 12 1900 (has links)
<p> We aimed to examine the satellite cell response and the potential of HGF signaling in mediating satellite cell activation and proliferation. To achieve this, we determined the time course of satellite cell activation and expression of HGF, HGFA, HAI-l, HAI-2 and the MRFs in skeletal muscle, as well as HGF protein in the blood, before and over five days following an acute bout of eccentrically-biased exercise. Eight recreationally active participants (20.6 ± 2.1 y; 180.5 ± 5.2 cm; 81.4 ± 9.8 kg) were recruited for the study. Subjects were required to perform 300 eccentric contractions involving the quadriceps femoris muscles at 180 °/s, over a 60° range of motion with a randomly selected leg. A baseline biopsy (PRE) was taken from the opposite leg. Muscle and blood samples were taken before the exercise (PRE) and at 4 h (T4), 24 h (T24), 72 h (T72) and 120 h (T120) following the exercise. The exercise protocol resulted in an increase in the number of satellite cells (N-CAM labeled cells), expressed both relative to myofiber number and relative to total myonuclei, between PRE and T4 which was sustained over the time course (p<0.001). Further increases in N-CAM labeled cells, expressed relative to myofibre cross-section, were observed between T4 and T24 (p=0.01) and between T4 and T72 (p=0.002). Myf5 mRNA expression increased significantly from both PRE and T4 by T24 (p=0.04). MyoD mRNA increased significantly from PRE by T4 (p=0.02). Myogenin mRNA increased significantly at T24 versus PRE (p=0.02). No significant change was observed over time for MRF4. HGF protein increased significantly in serum from baseline (PRE) to T4 (p=0.04). Active HGF protein was detected in skeletal muscle at rest (14.4±1.3 avg IDV/actin avg IDV) and tended to increase from PRE to T24 (p=0.12). HGFA protein increased significantly from PRE to T24 (p=0.04). HAI-2 increased significantly from PRE at T72 (p=0.03) and T120 (p=0.04). HAI-1 protein increased significantly from PRE to T24 (p=0.02). HAI-2 (32 kDa) increased significantly from baseline (PRE) by T24 (p=0.03), and also by T72 and T120 (p=0.02). HAI-2 (28 kDa) protein showed no significant change over time HGF, HGFA, HAI-1, and HAI-2 transcripts were undetected over the time course. We conclude that a single bout of high-intensity exercise is sufficient to activate satellite cells, which may involve both a local and systemic response to exercise-induced injury. Furthermore, we propose that HGF signaling plays an important role in the regulation of satellite cells in the post exercise period.</p> / Thesis / Master of Science (MSc)
85

THE RELATIONSHIP BETWEEN CAPILLARIES AND MUSCLE STEM CELLS: CONSEQUENCES FOR ADAPTATION, REPAIR AND AGING

Nederveen, Joshua P. 11 1900 (has links)
Skeletal muscle possesses a remarkable plasticity, able to repair, remodel and adapt to various stressors. A population of resident muscle stem cells, commonly referred to as satellite cells (SC), are largely responsible for skeletal muscle plasticity. The loss of muscle mass and plasticity typically observed in aging has been attributed to the deterioration of SC function. SC reside in a quiescent state, but following stimuli they become active, proliferate and eventually differentiate, fusing to existing muscle fibres. The progression of SC through this process, termed the myogenic program, is orchestrated by a complex network of transcription factors, termed myogenic regulatory factors. SC function is regulated by various growth factors and/or cytokines. The delivery of these signalling factors to SC is, in part, dependent on their proximity and exposure to local microvascular blood flow. The purpose of this thesis was to examine the relationship between skeletal muscle capillaries and muscle SC. We examined the effect of age on the spatial relationship between SC and muscle fiber capillaries, and observed that type II muscle fiber SC were located at a greater distance from the nearest capillary in older men as compared to their younger counterparts. We then examined the changes in SC activation status following a single bout of resistance exercise, prior to and following a 16wk progressive resistance training (RT) program. We observed that following RT, there was an enhanced SC activation in response to a single bout of resistance exercise. This enhanced response was accompanied by an increase in muscle capillarization following training. Furthermore, we investigated the impact of muscle fiber capillarization on the expansion and activation status of SC in acute response to muscle damaging exercise in healthy young men. We observed that muscle capillarization was positively related to SC pool activation and expansion. Taken together, we demonstrate that muscle capillarization may be related to the SC response following acute resistance exercise or exercise-induced injury, and may be implicated in adaptation to RT. Furthermore, the spatial relationship between muscle capillaries and SC is negatively altered by aging. / Thesis / Doctor of Philosophy (PhD) / Skeletal muscle health is, in part, maintained by a population of stem cells associated with individual muscle fibres. When muscle is damaged or stressed, these cells become activated, aid in muscle repair, and help drive adaptations to exercise. The central purpose of this thesis was to examine the relationship between muscle capillaries and muscle stem cells, and determine how that relationship impacts muscle stem cell function. We demonstrated that muscle stem cells and capillaries exist in close proximity to each other in skeletal muscle. We observed that a greater muscle capillarization is linked to improved muscle stem cell function during muscle repair. However, we also report that the distance between muscle capillaries and muscle stem cells becomes greater in aging, and may be a root cause of impaired muscle stem cell function in aging.
86

Regulation of human satellite cells in vitro via inflammatory cytokines and myogenic transcription factors across proliferation and differentiation

Lupi, Ryan Alexander 20 June 2019 (has links)
Skeletal muscle is a primary contributor to body mass and whole-body energy metabolism. It is an adaptive tissue with the ability to fluctuate in size and mechanical properties in response to stimulus. Health conditions involving chronic elevated inflammation levels often feature metabolic inflexibility and losses in skeletal muscle mass. Mononuclear stem cells, termed satellite cells, are mitotic and serve to donate nuclei to muscle fibers to enable skeletal muscle adaptation. Despite the well-characterized nature of satellite cell activation, proliferation, and differentiation, the underlying mechanisms regulating this process is not fully understood. Recent characterization of cytokines secreted by skeletal muscle in an endocrine type fashion has led to discoveries of inflammatory cytokines influencing satellite cell function. However, how the autocrine production and secretion of these cytokines during proliferation and differentiation in humans and their correlation with myogenic transcription factors is not well understood. Our study used satellite cells cultured from the vastus lateralis of 12 male human research subjects, and ELISA analysis to measure levels of TNF-α and IL-6 across proliferation, early differentiation, and late differentiation. Additionally, mRNA levels of Pax7, MyoD, myogenin, IL-6, TNF-α, and TGF-β were assessed in satellite cells cultured from a subset of two endurance trained and two sedentary individuals from the larger group of 12 human subjects. The novelty of our study is the large number of human research subjects and simultaneous analysis of inflammatory cytokine secretion, mRNA inflammatory cytokine expression, and myogenic transcription factor mRNA expression. Results showed an 83% decrease in IL-6 protein secretion 24 hours after exposure to differentiation media (p-value <0.05) before increasing 50-fold after 7 day of exposure to differentiation media (p-value < 0.05). Myogenin and TGF-β mRNA expression levels were positively correlated (R2 = 0.5814, p-value < 0.0001). A negative correlation was found between IL-6 and MyoD (R2 = 0.2473, p – value = 0.0257). After 1 day of exposure to differentiation media, satellite cells from endurance trained subjects exhibited higher levels of TGF-β mRNA expression compared to sedentary satellite cells of sedentary subjects of the same age and levels of adiposity (p-value < 0.05). Results support a potential relationship in humans satellite cells between myogenic transcription factors and inflammatory cytokines, however, further study is necessary in order to investigate the underlying mechanisms behind the correlations. / Master of Science / Skeletal muscle is responsible for conscious, voluntary movement. In addition, the tissue is responsible for the majority of energy expenditure in the human body. Skeletal muscle is able to adapt to exercise programs through the fusion of undifferentiated stem cells – called satellite cells – in the skeletal muscle fiber. In long-term diseased conditions, the immune response involves chronic rises in inflammation and results in the loss of skeletal muscle and corresponding loss of ability to move. A shorter rise in inflammation is also linked with the positive exercise response. Our study features satellite cells harvested from muscle samples of 12 male human research participants. We were interested in evaluating the relationships between the expression and secretion of two proteins associated with inflammation and regulation of the satellite cell cycle. The two proteins of interest in our study are tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). We also measure the gene expression of another inflammatory protein, transforming growth factor beta (TGF-β). In order to know where the cells were in their life cycle, we measured expression of genes associated with the division (Pax7), early fusion (MyoD), and late fusion of satellite cells (myogenin). Our study found a decrease in IL-6 secretion and expression as the process of satellite cells turning into muscle fibers was initiated. Additionally, a 50-fold increase in IL-6 expression was found at day 7 compared to day 0 of the satellite cell cycle. Additionally, we found a positive correlation between TGF-β and myogenin and a negative correlation between IL-6 and MyoD. Although we found correlations between satellite cell cycle genes and inflammation genes, more research is necessary to see if there is a pathway causing this relationship.
87

Assessment of Physiological Challenges in Overwintering Black Bears (Ursus americanus): Active Gestation, Neonatal Growth, and Skeletal Muscle Conservation

Mesa Cruz, Jose Bernardo 29 June 2018 (has links)
The American black bear (ABB) (Ursus americanus) exhibits physiological strategies highly synchronized with the environment. Such strategies enable bears to exploit food resources when available and survive the winter months by hibernating without ingesting food or water. However, there are multiple aspects of ABB hibernation physiology that remain unknown. For instance, there is conflicting evidence on the occurrence of ABB pseudopregnancy (a physiological state in which a non-pregnant bear exhibits progesterone levels similar to gravid bears in the absence of an actual pregnancy). Also, there is little known about postnatal development of cubs or the influence of maternal traits on embryonic implantation and cub growth. Finally, the role of satellite cells (SCs – stem cells able to regenerate muscle fibers) play in maintaining muscle functionality during hibernating remains understudied. Therefore, I aimed to assess these four aforementioned aspects using wild ABBs held temporarily captive at Virginia Tech's Black Bear Research Center (VT-BBRC). The major findings of this dissertation are: 1) I suggest that wild ABBs do not experience pseudopregnancy as a reproductive strategy; 2) interactions between litter size and cub age best described postnatal cub weight dynamics and organ development. Twin cubs were heavier than single and triplet cubs, yet cubs from all litter sizes reached similar weights after mothers began consuming food post hibernation. Single cubs experienced delayed timing in ear, eye, and teeth development compared to other litter sizes; 3) maternal traits such as higher body weight and higher ability to gain weight in the fall are closely associated with earlier timing of embryonic implantation than in leaner females, which gained less weight per day in the fall; and 4) SC ability to generate muscle fibers is increased during ABB hibernation. I propose that maintaining the SCs are an important potential pathway for limiting muscle atrophy during bear hibernation. Understanding pre and postnatal development of ABBs is important for exploring factors related to climate, maternal characteristics, which possibly affect birthing phenology, and fitness of bears experiencing rapid anthropogenic environmental change. Functional aspects of bear muscle conservation are interesting for potentially for elucidating avenues to improve treatments for human metabolic disorders such as muscular dystrophy, sarcopenia, and disuse atrophy. / Ph. D.
88

Regulation of protein metabolism in skeletal muscle of low-birth-weight neonatal pigs

Chen, Ying 27 September 2017 (has links)
The neonatal period in mammals is characterized by high rates of growth, attributed to rapid myonuclear accretion and protein deposition in muscle. Low-birth-weight (LBWT) neonates experience restricted muscle development, which leads to impaired postnatal growth and metabolic disorders later in life. The overall hypothesis of this dissertation was that dysfunction of myogenic satellite cells and aberrant regulation of protein synthesis and degradation signaling predispose LBWT neonatal pigs to slower postnatal growth. We sought to determine the proliferation and differentiation of satellite cells (SCs) derived from skeletal muscle of LBWT neonatal pigs and to elucidate the cellular mechanisms that regulate protein synthesis and degradation in LBWT pig muscles. Newborn pigs were considered as normal-birth-weight (NBWT) or LBWT when weight at birth was within 0.5 SD and below 2 SD of litter average respectively. SCs isolated from longissimus dorsi (LD) muscle of NBWT and LBWT neonatal pigs displayed similar proliferation rates. Fusion was modestly diminished in SCs from muscle of LBWT pigs compared with their NBWT siblings, suggesting SCs were not intrinsically different between the two groups and were unlikely a major contributor to the impaired muscle growth of LBWT pigs. Plasma and muscle insulin-like growth factor (IGF)-I was diminished in LBWT compared with NBWT pigs. In addition, reduced activation of key components of IGF-I downstream signaling pathway in LBWT pigs muscle may lead to diminished translation initiation signaling and thus decreased protein synthesis in these animals. However, IGF-I receptor expression and myostatin signaling inversely correlated to LBWT, indicating they may participate in compensatory responses for the reduction in protein synthesis signaling. Expression of eukaryotic initiation factor (eIF) 4F complex subunits, eIF4E, eIF4G, and eIF4A was reduced in LBWT compared with NBWT pigs. This would suggest that diminished translation initiation signaling in skeletal muscle of LBWT pigs is the main factor that predisposes LBWT pigs to slower growth rates in the neonatal period. In contrast, changes in protein degradation signaling do not appear to affect protein turnover in LBWT neonatal pigs. / PHD
89

Satellite cell proliferation in response to a chronic laboratory-controlled uphill vs. downhill interval training intervention

Eksteen, Gabriel Johannes 03 1900 (has links)
Thesis (MSc (Physiological Sciences))--University of Stellenbosch, 2006. / Despite a growing interest into the mechanisms of the repeated bout effect, little is known about the consequences of chronic eccentrically biased training and the possible advantageous such training may offer to athletes as well as patients with muscle-debilitating disease. This study investigated the role of satellite cells in the muscle adaptation in response to either downhill or uphill high intensity training (HIT). Welltrained endurance runners were divided into two training groups matched for training volume and 10 km running times (n = 6, uphill training, UP; n = 6, downhill training, DH) and subjects in both groups completed 10 HIT sessions over a period of 4 weeks. Running performance was tested before and after the training intervention by a 10 km road race and peak treadmill speed (PTS) in horizontal and inclined (+5%) laboratory incremental tests to exhaustion. Skeletal muscle biopsies were sampled at baseline, after 2 HIT sessions, and after 4 weeks of HIT. Muscle was analysed immunohistochemically for satellite cell frequency as identified by CD56 and M-cadherin (Mcad) expression. Myogenin protein contents of muscle homogenates were determined by western blotting. Myosin heavy chain (MyHC) isoform proportions and mean fibre crosssectional area was measured. During the HIT intervention, UP exercised at a higher percentage of their HRmax than DH (mean ± SD, 97 ± 1 vs. 92 ± 3 %HRmax, p < 0.005), but at a similar rate of perceived exertion (RPE). DH completed more intervals per session and covered greater distance per session than their UP counterparts. Both training groups increased their training intensity but decreased their training volume during the 4 weeks of HIT. The combined group of 12 athletes improved their PTSgradient (mean ± SD, 16.7 ± 0.8 vs. 17.3 ± 1.0 km/h, p < 0.05). No significant differences between groups were found for PTS, VO2max or 10 km performance. Satellite cell frequency in this cohort of trained runners (48.9 ± 10.3 km/week) at baseline was similar to healthy young males (CD56+ cells/fibre, 0.19 ± 0.10). Satellite cell frequency increased significantly in DH after 4 weeks (Mcad, 123%; CD56, 138%) and non-significantly in UP (Mcad, 45%, CD56, 39%). No significant differences were found after two training sessions or at any time between groups. Mcad and CD56 expression correlated well (r = 0.95, p < 0.0001). Muscle myogenin content increased for both groups (UP: 56%; DH: 60%) after 4 weeks. No notable changes were seen after two training sessions. However, myogenin levels 2 days after session 1 correlated well (r= 0.99, p<0.005) with muscle pain experienced on the same day, as measured by the visual analogue scale. No changes were seen in the MyHC proportions or the fibre cross-sectional area after the training intervention. It was concluded that the training intervention was too short to induce changes in MyHC distribution or fibre area. Is seems likely that satellite cell proliferation was initiated as an early response to DOMS, but the response was maintained for 4 weeks. However, due to the lack of change in fibre morphology and myonuclear number, the role of satellite cell proliferation in fibre type transformation or muscle hypertrophy could not be established. Similarly, various possible roles for increased myogenin protein are offered, but since the origin of myogenin expression (satellite cells vs. myonuclei) was not determined, no definite conclusion regarding the precise function can be made. In conclusion, this study is the first to definitively indicate satellite cell proliferation in well-trained endurance runners in response to a change in training, including specifically downhill HIT. This response was early and sustained. This study asks several questions about the role of satellite cells during muscle adaptation to repetitive downhill training, and lays a foundation for further research into this unexplored field.
90

The effects of low level laser therapy on satellite cells

Van Niekerk, Gustavus 03 1900 (has links)
Thesis (MSc (Physiological Sciences)--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Although muscle tissue demonstrates a remarkable capacity for regeneration following injury, this process is slow and often accompanied by the formation of scar tissue and a subsequent decrease in contractile capacity following regeneration. Treatment options are few and mostly supportive in nature. This regeneration process involves muscle stem cells (satellite cells) which ultimately give rise to the regenerated muscle. The contentious field of low level laser therapy (LLLT) has made remarkable claims in facilitating wound healing in soft tissue injuries of various types. Yet, the mechanism(s) invoked in these beneficial effects are poorly understood. We have investigated the effects of LLLT using a 638 nm laser on satellite cells in culture and in-vivo. Using an array of techniques we have measured, amongst other things, metabolic responses to laser irradiation, signaling pathways activated/altered and antioxidant status. In response to laser irradiation satellite cells in culture showed an increase in MTT values (a measure of metabolic activity) and a decrease in antioxidant status (measured using the ORAC assay). In addition laser irradiation also altered the expression and phosphorylation state of several signaling pathways, including Akt and STAT-3. Following on from this the effects of laser irradiation on satellite cells in-vivo was assessed in a rat model of contusion injury. No significant differences in satellite cell number was found following laser irradiation, changes were seen in tissue antioxidant status and blood antioxidant status (measured using the ORAC assay). In the course of this study several standard techniques were used to investigate the effects of laser irradiation on satellite cells both in-vitro and invivo. It has become apparent that several of these techniques have problems associated with them that possibly make them inappropriate for vi further use in studies involving laser irradiation. However the results indicate that laser therapy is induces satellite cell behavior and further study is warranted in this field. / AFRIKAANSE OPSOMMING: Alhoewel spierweefsel merkwaardige regenerasie kapasiteit vertoon ten opsigte van besering, is hierdie proses stadig en word soms vergesel met die vorming van letselweefsel asook ‘n gevolglike afname in kontaktiele kapasiteit na afloop van regenerasie. Behandelingsmoontlikhede is skaars en meesal ondersteunend van aard. Hierdie proses sluit spierstamselle (satelietselle), wat uiteindelik die ontstaan van die regenerasie van spier tot gevolg het, in. Die kontroversiële veld van lae vlak laserterapie (Engels: Low level laser therapy (LLLT)) het merkwaardige aansprake in die fasilitering met verskeie sagteweefsel wondgenesing. Nietemin, die meganisme(s) wat voordelige effekte induseer, word nog nie goed begryp nie. Ons het die effek van LLLT, deur gebruik te maak van ‘n 638 nm laser op kultuur in vitro satelietselle sowel in-vivo, ondersoek. Deur gebruik te maak van verskeie tegnieke is onder meer die metaboliese, sowel die seinstransduksie weë en antioksidantstatus na laserbestraling, gemeet. In reaksie op die laserbestraling het satelietselle (in kultuur) ‘n toename in MTT waardes getoon (‘n maatstaf van die metaboliese aktiwiteit) en ‘n afname in die antioksidantstatus (gemeet deur van die ORAC toets). Addisioneel het laserbestraling ook uitdrukking en fosforilering van verskeie proteïene betrokke in seintransduksieweë beïnvloed, insluitend Akt, STAT-3). Na afloop van hierdie effekte op satelietselle na laserbestraling, is daar gebruik gemaak van ‘n kneusbeseringsrotmodel om hierdie effekte in vivo te ondersoek. Geen betekenisvolle verskille in die aantal satelietselle na laserbestraling is opgemerk nie, maar veranderings is wel opgemerk in weefsel- en bloed-antioksidantstatus (gemeet deur van die ORAC toets gebruik te maak). Gedurende die verloop van die studie is van verskeie standaardtegnieke gebruik gemaak om die effekte van laserbestraling op beide satelietselle in vitro en in vivo te ondersoek. iv Dit het duidelik na vore gekom dat daar wel gepaardgaande probleme met van hierdie tegnieke voorgekom het, en dat van hierdie tegnieke nie gepas is vir ondersoek in laserbestralingsstudies nie. Nietemin, die resultate toon wel dat laserbehandeling. satelietselgedrag induseer wat verdere studie in hierdie veld noodsaak

Page generated in 0.0604 seconds