• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 169
  • 64
  • 27
  • 25
  • 13
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 372
  • 100
  • 99
  • 44
  • 39
  • 35
  • 32
  • 30
  • 27
  • 27
  • 25
  • 25
  • 24
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Gradient Flow Exact Renormalization Group for Scalar Field Theories / スカラー場の理論におけるグラディエントフロー厳密くりこみ群

Haruna, Junichi 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24410号 / 理博第4909号 / 新制||理||1701(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 福間 將文, 教授 橋本 幸士, 准教授 吉岡 興一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
172

[en] SCANNING OF GREGORIAN OFF-SET ANTENNAS BY DISPLACEMENT OF FEEDER / [pt] VARREDURA DE ANTENAS GREGORIANAS OFF-SET POR DESLOCAMENTOS DO ALIMENTADOR

HELIO FRANCISCO DA SILVA 03 January 2007 (has links)
[pt] Este trabalho tem por objetivo um estudo da viabilidade de se fazer varreduras com uma antena gregoriana off-set com deslocamentos apenas do alimentador. São localizadas as regiões focais para a antena receptora de modo a posicionar o alimentador de uma maneira simples. Também são apresentados os diagramas de radiação correspondentes a estes deslocamentos calculados segundo a Teoria Escalar da Difração; e as limitações de varreduras para a antena particular que serviu para testar a eficiência do método. / [en] This work is related to the study of the pattern of Gregorian off-set antennas, by displacement of the feeder. The position of the feeder is obtained, in a simple way, by determining the focal regions of the antennas, working in reception. The radiation patterns corresponding to different position of the feeder are also presented. Such patterns are calculated according to the scalar theory of diffraction. The useful range of scanning, for a given antenna, used to check the efficiency of the method, is determined.
173

Droplet-resolved direct numerical simulation of fuel droplet evaporation

Jain, Abhishek January 2022 (has links)
No description available.
174

Simulations of turbulent boundary layers with heat transfer

Li, Qiang January 2009 (has links)
No description available.
175

New Visualization Techniques for Multi-Dimensional Variables in Complex Physical Domains

Vickery, Rhonda J 13 December 2003 (has links)
This work presents the new Synthesized Cell Texture (SCT) algorithm for visualizing related multiple scalar value fields within the same 3D space. The SCT method is particularly well suited to scalar quantities that could be represented in the physical domain as size fractionated particles, such as in the study of sedimentation, atmospheric aerosols, or precipitation. There are two components to this contribution. First a Scaling and Distribution (SAD) algorithm provides a means of specifying a multi-scalar field in terms of a maximum cell resolution (or density of represented values). This information is used to scale the multi-scalar field values for each 3D cell to the maximum values found throughout the data set, and then randomly distributes those values as particles varying in number, size, color, and opacity within a 2D cell slice. This approach facilitates viewing of closely spaced layers commonly found in sigma-coordinate grids. The SAD algorithm can be applied regardless of how the particles are rendered. The second contribution provides the Synthesized Cell Texture (SCT) algorithm to render the multi-scalar values. In this approach, a texture is synthesized from the location information computed by the SAD algorithm, which is then applied to each cell as a 2D slice within the volume. The SCT method trades off computation time (to synthesize the texture) and texture memory against the number of geometric primitives that must be sent through the graphics pipeline of the host system. Analysis results from a user study prove the effectiveness of the algorithm as a browsing method for multiple related scalar fields. The interactive rendering performance of the SCT method is compared with two common basic particle representations: flat-shaded color-mapped OpenGL points and quadrilaterals. Frame rate statistics show the SCT method to be up to 44 times faster, depending on the volume to be displayed and the host system. The SCT method has been successfully applied to oceanographic sedimentation data, and can be applied to other problem domains as well. Future enhancements include the extension to time-varying data and parallelization of the texture synthesis component to reduce startup time.
176

L2 Optimized Predictive Image Coding with L∞ Bound

Chuah, Sceuchin 04 1900 (has links)
<p>In many scientific, medical and defense applications of image/video compression, an <em>l</em><sub>∞ </sub>error bound is required. However, pure <em>l</em><sub>∞</sub>-optimized image coding, colloquially known as near-lossless image coding, is prone to structured errors such as contours and speckles if the bit rate is not sufficiently high; moreover, previous <em>l</em><sub>∞</sub>-based image coding methods suffer from poor rate control. In contrast, the <em>l</em><sub>2</sub> error metric aims for average fidelity and hence preserves the subtlety of smooth waveforms better than the <em>l</em><sub>∞</sub> error metric and it offers fine granularity in rate control; but pure <em>l</em><sub>2</sub>-based image coding methods (e.g., JPEG 2000) cannot bound individual errors as <em>l</em><sub>∞</sub>-based methods can. This thesis presents a new compression approach to retain the benefits and circumvent the pitfalls of the two error metrics.</p> / Master of Applied Science (MASc)
177

Measurements of Scalar Convection Velocity in Heated and Unheated High-Speed Jets

Shea, Sean Patrick 14 November 2018 (has links)
Jet noise has been a growing concern in recent years due to the costs associated with hearing loss of United States service members. Jet noise is also becoming more of a concern due to the rise of civilian complaints regarding the noise of jets near civilian and military air stations. One source of noise generation is from packets of air called eddies, which move with a convection velocity Uc. The current work seeks to expand upon the understanding of jet noise by collecting data using Time-resolved Doppler global velocimetry (TR-DGV) from regions of the jet known to produce high levels of acoustic radiation. Past experiments in studying convection velocity are reviewed based on the technique for obtaining the velocities. To add to these experiments, the current work analyzes data obtained using TR-DGV applied to a perfectly expanded Mach 1.65 flow with total temperature ratio (TTR) equal to 1. Additional measurements were obtained on a Mach 1.5 nozzle operated at a slightly over expanded condition and at TTR = 2. The cold jet flow is compared to the past experiments on unheated jets and demonstrates good agreement with respect to normalized convection velocities based on the jet exit speed. The data is then compared to past experiments conducted on the same nozzle at heated conditions. Shadowgraph imaging is used as a qualitative tool to locate shock cells within the jet plume. TR-DGV data from near the lipline (r = 0.5D) is axially aligned with the shadowgraph images to demonstrate that the shock structure within the potential core causes detectable variations in the scalar convective velocity. Additionally, it is shown that in the heated and unheated Mach 1.65 jet and the over expanded heated Mach 1.48 jet that the convection velocity does increase beyond the potential core. The Mach 1.48 jet is also compared to mean velocities obtained using Particle Image Velocimetry and found that the convective and mean velocities were only similar in some regions of the jet. A discussion is provided on suggestions of future work on where to obtain data within the jet plume and how to collect the data using current capabilities. Suggestions are also provided for improving data quality in future experiments, as well as ideas for future investigations into convection velocity along the length of the jet plume using TR-DGV. / Master of Science / Jet noise has been a growing concern in recent year due to the costs associated with hearing loss of United States service members. Additionally, many civilians complain about the noise of aircraft flying both out of military facilities and commercial airports. One source of noise generation is from packets of air called eddies which move with a convection velocity. Researchers have identified that by affecting the convection velocities of these eddies, there is a larger benefit than other traditional methods such as engine chevrons. The current work summarizes techniques used to investigate convective velocity as well as to provide evidence for other unconfirmed theories. This study focuses on using a laser-based technique to obtain data within the flow of an unheated supersonic jet. An unheated jet is studied to allow for easy comparison to other experiments that have used different diagnostic techniques. Additionally, this case is studied to complete a set of experiments that were previously conducted on the same nozzle so that there is a true base-line or “control” case for future work. Later in this paper, analysis will be done to show how shocks within the jet affect the convective velocity. A combination of both quantitative and qualitative efforts are performed to accomplish this. Additionally, it will be shown that after the potential core of the jet breaks down, there is an increase in the local convective velocity in this region immediately after the potential core. Finally, a brief summary will be given and suggestions for future work will be presented.
178

Cooperative Intentions and Epistemic Reasoning in Scalar Implicature Derivation: A Developmental Perspective

Porrini, Anna Teresa 03 June 2024 (has links)
This doctoral thesis explores the question of how much people’s ability to reflect on another person’s intentions and perspectives contributes to their success in understanding language, and further how children acquire these communication skills during development. This aim is achieved by focusing on a specific linguistic phenomenon, scalar implicatures, by which listeners enrich the meaning of a given utterance to implicate more than what is explicitly said. Such implicatures arise when a speaker uses a less informative term, such as “some”, when a more informative term like “all” is also available, thus leading the listener to the conclusion that the more informative alternative must be false. For instance, if a speaker says that some of her friends are curly, the listener will enrich the statement and assume that not all of them are. The first part of the thesis is focused on scalar implicature derivation during adulthood, to delineate the role of understanding communicative intention and reasoning about people’s epistemic state in the derivation process. The second part of the thesis investigates theoretical and methodological aspects of the acquisition of scalar implicatures, both through reviews of the literature and experimental studies investigating the role of inhibitory control, intention-reading and perspective-taking in implicature derivation between the ages of 2 and 17.
179

Thermodynamic traces of de Sitter quantum gravity

Grewal, Manvir January 2024 (has links)
In this thesis, we investigate the thermodynamics of the de Sitter static patch in order to extract information which can constrain microscopic models of de Sitter quantum gravity. We begin by reviewing previous works which demonstrate how to make sense of the seemingly ill-defined static patch density of states through the introduction of Harish-Chandra group characters, or equivalently through renormalization with respect to a reference problem in Rindler space. A thermal partition function can then be constructed and expressed in terms of a sum over quasinormal mode frequencies. We recap how, in the scalar case, this partition function is equivalent to a 1-loop sphere path integral, as expected from the Gibbons-Hawking proposal, and provides macroscopic data which microscopic models must be consistent with. We next present novel results dealing with scalar Green functions in de Sitter. After constructing various static patch correlators and showing how they can be obtained from their sphere counterparts, we relate the spectral Green function to the Harish-Chandra characters that we came across before, tying them to observables directly accessible within the static patch. We comment on how this result will allow us to generalize thermodynamic considerations to interacting theoriesand therefore place stronger consistency constraints on microscopic models. We finally generalize our analysis to spinning fields, for which thermal partition functions differ from Euclidean path integrals by edge corrections. We reveal new findings which trace the source of these discrepancies to those quasinormal modes which do not correspond to regular Euclidean solutions, explicitly demonstrating this through several examples. Our results highlight the differences between Lorentzian and Euclidean approaches to de Sitter thermodynamics, and hint at new avenues to pursue in the hopes of providing more consistency constraints.
180

Scale-Space Methods as a Means of Fingerprint Image Enhancement / Skalrymdsmetoder som förbättring av fingeravtrycksbilder

Larsson, Karl January 2004 (has links)
<p>The usage of automatic fingerprint identification systems as a means of identification and/or verification have increased substantially during the last couple of years. It is well known that small deviations may occur within a fingerprint over time, a problem referred to as template ageing. This problem, and other reasons for deviations between two images of the same fingerprint, complicates the identification/verification process, since distinct features may appear somewhat different in the two images that are matched. Commonly used to try and minimise this type of problem are different kinds of fingerprint image enhancement algorithms. This thesis tests different methods within the scale-space framework and evaluate their performance as fingerprint image enhancement methods. </p><p>The methods tested within this thesis ranges from linear scale-space filtering, where no prior information about the images is known, to scalar and tensor driven diffusion where analysis of the images precedes and controls the diffusion process. </p><p>The linear scale-space approach is shown to improve correlation values, which was anticipated since the image structure is flattened at coarser scales. There is however no increase in the number of accurate matches, since inaccurate features also tends to get higher correlation value at large scales. </p><p>The nonlinear isotropic scale-space (scalar dependent diffusion), or the edge- preservation, approach is proven to be an ill fit method for fingerprint image enhancement. This is due to the fact that the analysis of edges may be unreliable, since edge structure is often distorted in fingerprints affected by the template ageing problem. </p><p>The nonlinear anisotropic scale-space (tensor dependent diffusion), or coherence-enhancing, method does not give any overall improvements of the number of accurate matches. It is however shown that for a certain type of template ageing problem, where the deviating structure does not significantly affect the ridge orientation, the nonlinear anisotropic diffusion is able to accurately match correlation pairs that resulted in a false match before they were enhanced.</p>

Page generated in 0.0344 seconds