• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 24
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Physiological Factors Affecting the Bactericidal Activity of the Western Fence Lizard (Sceloporus occidentalis) for the Lyme Disease Spirochete, Borrelia burgdorferi

Weichert, Kyle Russell 01 June 2015 (has links) (PDF)
The Western Fence Lizard (Sceloporus occidentalis) is a major host of juvenile stages of the Western Black-legged Tick (Ixodes pacificus), which is the vector for the Lyme disease causative spirochete bacterium Borrelia burgdorferi in the western United States. Because S. occidentalis is reservoir incompetent and capable of eliminating spirochetes from infected ticks, it has been implicated as a major factor in the ecology of Lyme disease in the West. Although complement proteins in lizard blood have been established as the borreliacidal factor, no studies have examined intraspecific variability in host lizard borreliacidal capacity. In Chapter 1 of this thesis, we introduce the complexity of the Borrelia burgdorferi transmission cycle and it’s implications for transmission risk. In Chapter 2 we tested the hypothesis that host lizard physiological condition impacts their borreliacidal capacity. Blood plasma of lizards in varying physiological conditions was challenged against cultured B. burgdorferi, and the complement-mediated inactivation of spirochetes was quantified. Adult lizards had higher bactericidal activity than first-year juveniles, suggesting that complement-mediated inactivation develops with maturity and/or exposure to spirochete antigens. Also, bactericidal activity was positively associated with lizard tick load and body condition. Adult lizard sex did not significantly affect spirochete mortality. Lizards from an inland site with little exposure to ticks had higher bactericidal activity than lizards from a coastal population that is heavily parasitized by ticks.
12

The ontogeny of display behavior in Sceloporous undulatus hyacinthinus (Sauria: iguanidae)

Roggenbuck, Madeleine Edith January 1982 (has links)
Displays of 36 Sceloporus undulatus hyacinthinus from 8 clutches were recorded on video tape from the day of hatching to adult size during 1978, 1979, and 1980. Nine hundred forty-one displays were analyzed frame by frame, and durations of display units were calculated to the nearest 0.01 s. From the day of hatching, males and females performed both of the display types found in adults, and little significant ontogenic change was found in display patterns or in unit durations; only 7% and 6% of total variance in A and B Displays, respectively, was due to ontogeny. Stereotypy of unit durations both within and among lizards was unchanged across time. Consequently, the display patterns are viewed as being purely innate. Some ontogenic changes were observed in the ways in which the lizards utilized the displays patterns. As compared with hatchlings, older lizards tended to display more frequently, to use display modifiers more often, and to perform displays in aggressive and courtship contexts as well as in assertion. Older females had a significantly higher A: B ratio than males or younger females. These changes in display behavior are viewed as being due to the influences of hormones and social experiences. Slightly more than half of the variance in unit durations for A and B Displays was attributed to inter-individual differences. Of this, approximately half was due to differences among clutches and half to differences among lizards within clutches. For B Displays there were some inter-individual differences (e. g., deleted bobs or dips preceding certain bobs) in the form of the displays as well as in unit durations. Individuals were not consistent in the inclusion of these characteristics in their B Displays. Mean heritability estimates for durations of units 1-12 were 0.60 and 0.38 for A and B Displays, respectively. / M. S.
13

Home range and activity in a Virginia population of Sceloporus undulatus

Preston, Karen Elizabeth January 1983 (has links)
A study of the lizard Sceloporus undulatus, conducted 1981-82 at an abandoned coal mine in Virginia, was designed to determine whether home range size, home range overlap, and patterns of behavior reflected the requirements of polygyny. The lizards were seen most often on the piles of debris that characterized the study site. Home range size was most strongly influenced by the debris pile size. Mean home range sizes (MCP, N≥5) were 69.3 m² and 59.9 m² for adult males and females, respectively, when data for all debris piles were pooled. The average overlap of home ranges for both study areas and for both years was 32% among adult females and 56% between adult males and females. No overlap among adult males was observed. Adult males usually associated with more than one female. Display frequency (push-ups) and total distance moved during 20 min observation periods were higher for adult males than adult females. Jiggling (rapid head nodding) was observed only in males. The frequencies of other behaviors (e. g. prey capture) did not differ between the sexes. Only one activity, substrate licking by males, seemed to decrease significantly as a function of date. Male home range owners interacted socially with females during the post-reproductive period. This behavior may increase a male's mating success the following spring, as most adult males that appeared on the study site during the mating season in 1982 had been home range owners in 1981. / M.S.
14

Population Structure of Yarrow's Spiny Lizard, Sceloporus jarrovii, and its Malarial Parasite, Plasmodium chiricahuae

Kaplan, Matthew Ezra January 2011 (has links)
Estimates from radiocarbon-dated packrat middens indicate that the high elevation woodland communities of the Madrean Sky Islands were continuous as recently as 8,000 to 12,000 years ago. A number of population studies on a diverse collection of taxa have investigated the extent to which the Madrean Sky Island system has limited gene flow among mountain ranges. The results of several of these studies indicate that population divergences may be more ancient than the Holocene. Yarrow’s spiny lizards, Sceloporus jarrovii, were sampled from eight sites representing seven mountain ranges. The populations of S. jarrovii are host to the malarial parasite, Plasmodium chiricahuae. DNA sequences from the lizards and their malarial parasites were used to reconstruct the evolutionary relationships and estimate the ages of the populations for both host and parasite. The findings of these analyses indicate that the sky island populations of S. jarrovii have been isolated for hundreds of thousands of years and did not experience gene flow during the last woodland expansion. In contrast, the results indicate that the malarial infection occurred more recently, possibly during the Holocene woodland expansion. In addition, the prevalence of the malarial infection was compared to multiple attributes of the lizards. This analysis revealed a negative relationship between the genetic diversity of the lizard populations and the prevalence of infection. Furthermore, lizard populations with lower prevalence of infection have a lower frequency of multiclonal infections.
15

Ecological Consequences of Landscape Fragmentation on the Lizard Community in the Mescalero-Monahans Shinnery Sands

Leavitt, Daniel 1979- 14 March 2013 (has links)
Landscape fragmentation poses a major threat to biodiversity world-wide. The goal of my dissertation research was to determine the effects of landscape fragmentation on a lizard community in the Mescalero-Monahans shinnery sands, New Mexico and the extent to which conservation efforts might protect biodiversity in this ecosystem. My research relied heavily on data collected from a large-scale spatially-replicated comparative study. The purpose of this study was to evaluate the impacts of landscape fragmentation as a result of oil and gas development on the dunes sagebrush lizard (Sceloporus arenicolus). Results from analysis of lizard community structure indicate that fragmented sites are less diverse than non-fragmented sites. In particular, two species are found in lower density and occupancy in the fragmented locations (Holbrookia maculata and Sceloporus arenicolus). Analysis of landscape configuration at the scale of a trapping grid indicated that sand dune blowout shape and size differed between fragmented and non-fragmented locations. Differences in landscape pattern were associated with reduced lizard diversity. Because of this association between lower diversity and altered landscape pattern, extensive alterations to landscape pattern may cause disassembly at the ecosystem level. The maintenance of existing landscape pattern may be important to the maintenance of diversity in this ecosystem. Evaluations of habitat use patterns of the lizards in this community demonstrate that a few species have narrow preferences for certain habitats. In particular, H. maculata, Phrynosoma cornutum, and S. arenicolus all demonstrated narrow habitat use patterns. Effect size of fragmentation for each species indicated that the same three species showed a large effect when comparing their average abundances between fragmented and non-fragmented locations. Thus species that are most likely to benefit or be harmed by landscape fragmentation are those with the most specific habitat requirements. Umbrella species represent one of many approaches to conservation using surrogate species. I used data on ants, beetles, small mammals, lizards, and endemic species to test the use of the dunes sagebrush lizard (Sceloporus arenicolus) as an umbrella for endemism and biodiversity of the Mescalero-Monahans shinnery sands ecosystem. I applied a comparative approach at three spatial scales to examine how conservation practices at different scales may affect biodiversity and endemism in this ecosystem. At the largest scale, the frequency of occurrence for endemic species increased though no other patterns emerged because S. arenicolus was present at all sites and there were no relationships between relative abundances of S. arenicolus and the other taxonomic groups. At the smallest scale, both beetle species richness, diversity, and endemic species richness were higher in the presence of S. arenicolus. To protect biodiversity in this ecosystem, conservation efforts should focus on protection at the scale of the species distribution rather than on the small-scale placement of individual well pads.
16

Thermal selection in Sceloporus occidentalis during exercise recovery

Halley, Morgan A 01 January 2013 (has links)
Ectotherms regulate body temperature (Tb) primarily through behavioral interactions with their environment. These animals also have limited aerobic scopes and must rely on anaerobic metabolism to support intense activity; lactate byproduct and glycogen depletion are two consequences of anaerobic metabolism that must be dealt with during exercise recovery. It has been suggested that, in many ectothermic species, Tb may affect the rate of lactate clearance and glycogen repletion during recovery from intense exercise. This study investigated thermoregulatory behavior in Western Fence Lizards (Sceloporus occidentalis) to determine preferred Tb during exercise recovery. I hypothesized that animals would select higher Tb’sduring the recovery period on the basis that biochemical processes occur at faster rates at high temperatures, which may facilitate a more rapid reduction of lactate and replenishment of glycogen stores. However, it was found that control animals maintained a constant Tb of 33°C, while exercised animals cooled Tb to 30°C 20 minutes after exercising, and eventually warmed to 32°C by the 2 hour mark. Animals were found to be able to cool Tb by a maximum of 0.175°C/min given the available temperatures, which negated possible effects of temperature variation on Tb during exercise trials and transport. My results suggest a benefit of lowered Tb to facilitate exercise recovery in these animals. Behavioral hypothermia in S. occidentalis may be caused by physiological triggers associated with intense activity such as hypoxia, hypercapnia, or elevated blood lactate concentration. However, these speculations must be confirmed by further research.
17

Sexual Dimorphism in the Sceloporus undulatus Species Complex

Dittmer, Drew 2012 August 1900 (has links)
The Fence Lizard (Sceloporus undulatus complex) is a wide ranging North American species complex occurring from the eastern seaboard westward through the great plains and central Rocky Mountains and into the American Southwest. A recent phylogeny suggests four species lineages occur within S. undulatus. Traits within an interbreeding species that are influenced by sexual selection are under different selection pressures and may evolve independently from the selective forces of habitat. Sceloporus lizards have several characters that are influenced by sexual selection. I investigated sexual size dimorphism and allometric relationships of body size (snout vent length), torso length, rear leg length and three measurements of head size in 12 populations from the four species in the S. undulatus complex (N=352) specifically looking for variation among the 4 species. Additionally I investigated the size of signal patches between males and females in three species (N=339 specimens of S. consobrinus, S. cowlesi, S. tristichus) of the S. undulatus complex. Sexual confusion, was recently described in a population of the Sceloporus undulatus complex occurring in White Sands, New Mexico and the behavior is correlated with variation in badge size between male and female lizards. To make inferences about sexual confusion at the species level I investigated the presence and absence of signal patches in female lizards, and compare the sizes of signal patches between males and females. My analyses suggest that torso length and head size are significant sources of sexual size dimorphism but the findings differ from earlier published investigations of sexually dimorphic characters in the species complex. I also find support for the S. undulatus complex being generally a female larger species complex. However two of the 12 populations I investigated displayed male biased sexual size dimorphism. Analysis of signal patches across three species of the S. undulatus complex suggests that sexual dimorphism in signal patch size for S. cowlesi and S. tristichus may not prevent sexual confusion. While the near total absence of signal patches in female S. consobrinus is evidence that sexual confusion is not possible with regards to signal patches.
18

Rock-dwelling Spiny Lizards Take Advantage of Human-disturbed Habitat in the Trans-Mexican Volcanic Belt

January 2020 (has links)
abstract: Human land use and land cover change alter key features of the landscape that may favor habitat selection by some species. Lizards are especially sensitive to these alterations because they rely on their external environment for regulating their body temperature. However, because of their diverse life-history traits and strategies, some are able to respond well to disturbance by using their habitat in various ways. To understand how they use their habitat and how human modifications may impact their ability to do this, biologists must identify where they occur and the habitat characteristics on which they depend. Therefore, I used species occupancy modeling to determine (1) whether disturbance predicts the presence of two sympatric congeneric (species of the same genus) lizard species Sceloporus grammicus and S. torquatus, and (2) which habitat characteristics are essential for predicting their occupancy and detection. I focused my study in central Mexico, a region of prevalent land use and land cover change. Here, I conducted visual encounter and habitat surveys at 100 1-hectare sites during the spring of 2019. I measured vegetation and ground cover, average tree diameter, and abundance of refuges. I recorded air temperature, relative humidity, and elevation. I summarized sites as either undisturbed or disturbed, based on the presence of human development. I also summarized sites by ecosystem type, desert or forest, based on vegetation composition (i.e., desert-adapted vs. non-desert-adapted plants), evidence of remnant forest, air temperature, and relative humidity. I found that S. torquatus was more likely to be present in disturbed habitat, whereas S. grammicus was more likely to be present in areas with leaf litter, tree cover, and woody debris. S. torquatus was twice as likely to be detected in forests than deserts, and S. grammicus was more likely to be detected at sites with high elevation and high relative humidity, low temperature, and herbaceous and grass cover. These results emphasize the utility of species occupancy modeling for estimating detection and occupancy in dynamic landscapes. / Dissertation/Thesis / Masters Thesis Biology 2020
19

Seasonal Thermal Acclimation in a Population of Iguanid Lizards (Sceloporous o. occidentalis, Baird and Girard, 1852)

Greene, Charles Stetson 01 January 1967 (has links) (PDF)
Within the few years following the publications of the first studies on reptilian thermoregulation (Mosauer, 1936; Attsatt, 1939; Cowles and Bogert, 1944; and Strelnidov, 1944) there has been an increasing number of investigations concerned with the mechanisms that underlie this phenomenon. Many studies have demonstrated that heliothermic lizards maintain a relatively constant body temperature during per- iods of diurnal and seasonal activity. Much of this regulation is dependent upon behavior. An extensive review of thermoregulation in both lizards and snakes has been compiled by St. Girons and St. Girona (1956).
20

Hydric Physiology of Lizards

Weaver, Savannah 01 June 2023 (has links) (PDF)
Chapter 1: Animals can respond to extreme climate by behaviorally avoiding it, or by physiologically coping with it. We understand behavioral thermoregulation and physiological thermal tolerances, but water balance has largely been neglected. Climate change includes both global warming and changes in precipitation regimes, so improving our understanding of organismal water balance is increasingly urgent. We assessed the hydric physiology of endangered Blunt-nosed Leopard Lizards (Gambelia sila) by measuring cutaneous evaporative water loss (CEWL), plasma osmolality, body mass, and body condition throughout their active season. On average, G. sila had low CEWL that is likely desert-adaptive, and high plasma osmolality that is indicative of dehydration. Given that our study was in a drought year, it is reasonable to believe that every lizard measured was dehydrated to a degree. We hypothesized that throughout the G. sila active season, as their habitat got hotter and drier, G. sila would become increasingly dehydrated and watertight. Instead, CEWL and plasma osmolality showed minimal change for females and nonlinear change for males, which we hypothesize is connected to sex-specific reproductive behaviors and changes in food availability. We also measured thermoregulation and microhabitat use, expecting that more hydrated lizards would have higher body temperature, better thermoregulatory accuracy, and spend more time aboveground. However, we found no effect of CEWL, plasma osmolality, body mass, or body condition on these thermal and behavioral metrics. We posit either that G. sila tolerate dehydration to maintain activity during their brief active season, or that because every lizard was dehydrated due to the drought, they all experienced equally constrained thermoregulation and microhabitat use. Finally, G. sila spend considerable time underground in burrows, and we believe burrows serve as essential hydric, not only thermal, refugia. Our findings suggest that these lizards might benefit from artificial humid refugia and supplemental hydration, especially during drought. Chapter 2: Testing acclimation plasticity informs our understanding of functional biodiversity and applies to conservation management amidst our rapidly changing climate. While there is a wealth of research on the plasticity of thermal and hydric physiology in response to temperature acclimation, there is a comparative gap for research on acclimation to different hydric regimes, as well as the interaction between water and temperature. We sought to fill this gap by acclimating Western Fence Lizards (Sceloporus occidentalis) to experimental climate conditions (crossed design of Hot or Cool, Dry or Humid) for eight days, and measuring cutaneous evaporative water loss (CEWL), plasma osmolality, hematocrit, and body condition before and after acclimation under common conditions. CEWL changed plastically in response to the different climates, with lizards acclimated to Hot Humid conditions experiencing the greatest increase in CEWL. Change in CEWL among individuals was negatively related to treatment vapor pressure deficit. Plasma osmolality, hematocrit, and body condition all showed greater changes in response to temperature than to humidity or vapor pressure deficit. CEWL and plasma osmolality were positively related across treatment groups before acclimation and within treatment groups after acclimation, but the two variables showed different responses to acclimation, suggesting that they are interrelated but governed by different mechanisms. This study is among just a small number of studies that assess more than one metric of hydric physiology and that test the interactive effects of temperature and humidity. Such measurements will be essential for predictive models of activity and survival for animals under climate change.

Page generated in 0.0383 seconds