• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • 3
  • Tagged with
  • 15
  • 8
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Grundlagen zur Auslöschung von Schallfeldern durch Antischall unter Verwendung eines zweidimensionalen Ansatzes

Trimpop, Matthias. January 2003 (has links) (PDF)
Wuppertal, Univ., Diss., 2003. / Computerdatei im Fernzugriff.
2

Grundlagen zur Auslöschung von Schallfeldern durch Antischall unter Verwendung eines zweidimensionalen Ansatzes

Trimpop, Matthias. January 2003 (has links) (PDF)
Wuppertal, Univ., Diss., 2003. / Computerdatei im Fernzugriff.
3

Grundlagen zur Auslöschung von Schallfeldern durch Antischall unter Verwendung eines zweidimensionalen Ansatzes

Trimpop, Matthias. January 2003 (has links) (PDF)
Wuppertal, Universiẗat, Diss., 2003.
4

Verifizierung der numerischen Schallfeldberechnung mittels der Randelementemethode am Beispiel des Reifenrollgeräuschs

Rennert, Roland January 2005 (has links)
Zugl.: Dresden, Techn. Univ., Diss., 2005
5

Gase, Aerosole, Tropfen und Partikel in stehenden Ultraschallfeldern eine Untersuchung zur Anreicherung schwerer Gase, Verdampfung levitierter Tropfen, Kristall- und Partikelbildung /

Tuckermann, Rudolf. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2002--Braunschweig.
6

Model for the dynamics of liquid penetration into porous structures and its detection with the help of changes in ultrasonic attenuation

Daun, Matias. Unknown Date (has links)
Techn. University, Diss., 2006--Darmstadt.
7

Finite element simulation of external ear sound fields for the optimization of eardrum related measurements

Schmidt, Sebastian January 2009 (has links)
Zugl.: Bochum, Univ., Diss., 2009
8

Laser-akustische Messtechnik in der Materialcharakterisierung

Windisch, Thomas 19 October 2016 (has links) (PDF)
Testing equipment based on the propagation of elastic waves are commonly used for measuring specific material properties. As a prerequisite for accurate measurements a reliable acoustic coupling of probe and specimen is highly important. Therefore, high-resolution testing equipment is using fluids as couplant. In certain conditions, only non-contacting methods can be considered. This is the case for example, if particular high or low temperatures are present, if topographic features impede the use of ultrasonic probes, diffusion or solubility processes exist, measurements at vacuum are addressed and if high purity requirements need to be fulfilled. Hence, subject of this work is a method which offers to handle these constraints. With the emergence of modern laser systems the scientific basics for a non-contacting, laser-acoustic excitation of ultrasound were discovered. The tremendous development of commercially available laser systems during the last decade was taken as reason to investigate, to which extent former scientifically designed laboratory setups can now be merged into one single application oriented measuring system. All considerations are based on the thermoelastic excitation of ultrasound in combination with a likewise laser-based detection. By this, a self-contained measuring chain is built which combines the attributes non-destructive, non-contacting and application oriented within one ultrasonic measurement system for the first time. Thermal calculations lead to more precise equations which predict a laser-induced, local temperature rise of about 100 K. The examination of sound field simulations, as a prerequisite for the design of ultrasonic systems, identified an additional complex of problems. Although existing calculation approaches presuppose laser intensity profiles what can be described in analytical terms, real-world laser sources exhibit a complex shaped spatial distribution of laser energy. Based on a preceding CEFIT simulation, the developed CPSS method enables the calculation of the time resolved, 3D wave propagation of arbitrary shaped sources. A comparison to measured data successfully validated the results of simulation. By presenting selected scenario of measurements, the practical suitability of this non-contacting method is demonstrated. Using a transmission setup enables the characterization of open-pore ceramic coatings as well as the deduction of longitudinal and transversal speeds of sound. Equally, the imaging and estimation of the depth position of artificial defects with 0.7 mm in diameter is shown. Measurements based on a reflection setup provided evidence of a resolution limit of at least FBH = 1 mm in 4.5 mm depth. Additional examples demonstrate the ability to detect close-surface defects, the analysis of the challenging lamb waves zero-group-velocity S1 mode as well as the utilization of buried laser-acoustic sources. / Prüfsysteme, welche die Ausbreitungseigenschaften elastischer Wellen zur Ableitung spezifischer Messgrößen nutzen, sind etablierte Messverfahren. Voraussetzung für zuverlässige Ergebnisse ist stets die sichere akustische Kopplung zwischen Sensor und Material. Daher arbeiten hochauflösende Prüfsysteme mit Fluiden als Koppelmedium. Unter bestimmten Bedingungen scheiden kontaktierende Ultraschallsysteme allerdings ersatzlos aus. Dies ist beispielsweise der Fall, wenn die Probe eine besonders niedrige oder hohe Temperatur besitzt, topografische Eigenschaften ein sicheres Ankoppeln der Kontaktprüfköpfe erschweren, Diffusionsvorgänge oder Löslichkeiten zu beachten sind, in Vakuum zu arbeiten ist oder erhöhte Reinheitsanforderungen vorliegen. Gegenstand der vorliegenden Arbeit ist eine Technik welche hilft, diese Einschränkungen zu umgehen. Mit dem Aufkommen der ersten Laserquellen entstanden die wissenschaftlichen Grundlagen zur kontaktlosen Anregung und Detektion von Ultraschall. Die rasante Entwicklung kommerziell verfügbarer Lasersysteme der vergangenen Dekade wurde zum Anlass genommen zu untersuchen, in wie weit sich die einst wissenschaftlich orientierte Laboraufbauten zu einem anwendungsnahen Messsystem zusammenführen lassen. Basis der Arbeiten ist die thermoelastische Anregung von Ultraschall in Kombination mit einer ebenfalls kontaktlosen Detektion. Damit entsteht eine geschlossene Messkette welche erstmals die Eigenschaften zerstörungsfrei, kontaktlos und anwendungsorientiert in einem Ultraschallmesssystem vereint. Ausgangspunkt stellt die thermische Simulation der Anregung dar. Mit Hilfe präzisierter Gleichungen wird eine lokale Erwärmung von lediglich 100 K vorausgesagt. Für die zur Auslegung eines akustischen Messsystems notwendige Schallfeldsimulation wurde eine weitere Problematik identifiziert. Während bekannte Rechenansätze stets analytisch beschreibbare Strahlprofile des Lasers voraussetzen, zeigen reale Laserquellen kompliziert gestaltete räumliche Intensitätsverteilungen. Auf Basis einer vorangestellten CEFIT-Simulation ist mit der entwickelten CPSS-Methode eine zeitdiskrete Berechnung der 3D-Wellenausbreitung beliebiger Quellgeometrien möglich. Vergleiche mit realen Messdaten bestätigen die Simulationsrechnungen. Anhand ausgewählter Messszenarien wird die Praxistauglichkeit der kontaktlosen Arbeitsweise demonstriert. Neben der Charakterisierung einer offenporigen keramischen Beschichtung erlauben Transmissionsmessungen die Berechnung der longitudinalen und transversalen Schallgeschwindigkeiten. Ebenso ist die Abbildung wie auch die Beurteilung der Tiefenlage von Referenzfehlern mit lediglich 0,7 mm Durchmesser möglich. In Reflexionsmessungen wurde eine Auflösungsgrenze von mindestens KSR = 1 mm in 4,5 mm Tiefe nachgewiesen. Weitere Beispiele zeigen die Sensitivität hinsichtlich oberflächennaher Fehler, die Auswertung der anspruchsvollen „Zero Group Velocity“ S1-Mode der Lambwelle wie auch die Nutzung eingebetteter Quellen.
9

Neuartige Ultraschallmeßverfahren unter Nutzung von Schallfeldinformationen

Lenz, Michael 25 March 2014 (has links) (PDF)
Die vorliegende Arbeit untersucht, wie die genaue Kenntnis der Sende- und Empfangsschallfelder eines Ultraschallwandlers zur Entwicklung neuer Meßverfahren genutzt werden kann. Insbesondere werden dargestellt: - ein neuartiges, nichtscannendes Verfahren zur Bestimmung der Krümmung eines Reflektors, basierend auf der Analyse der Wellenfrontkrümmung reflektierter Schallfelder - ein neuartiges, nichtinvasives Verfahren zur Bestimmung der Schallgeschwindigkeit in einer Flüssigkeit durch Auswertung der Echosignale von im Ausbreitungsmedium vorhandenen Streupartikeln und - ein Verfahren zur Wandlercharakterisierung durch Messungen in Fluiden mit Streupartikeln, sowie verschiedene Zuordnungen von Schallfeldmerkmalen zu spezifischen Eigenschaften eines Ultraschallwandlers. Im Zusammenspiel von Simulation und Experiment konnten die Funktionstüchtigkeit aller Meßverfahren nachgewiesen und vielversprechende innovative Ansätze für zukünftige Entwicklungen angeregt werden: 1. Das nichtscannende Verfahren zur Krümmungsmessung erlaubt bei guter Justage eine Krümmungsbestimmung von Reflektoren mit Radien zwischen 6 und 11 mm mit einer Unsicherheit von ungefähr 0,5 mm. In Kombination mit herkömmlichen scannenden Verfahren bietet es Ansätze zur präzisen Größenbestimmung von Fehlern in der zerstörungsfreien Prüfung. 2. Das Verfahren zur nichtinvasiven Schallgeschwindigkeitsmessung erlaubt eine Bestimmung von Schallgeschwindigkeiten mit einer statistischen Meßunsicherheit von 0,1 %. Mögliche Weiterentwicklungen zur Messung der Schallgeschwindigkeit mit örtlicher Auflösung und zur Gewinnung neuer Diagnosemöglichkeiten in Metallurgie (nichtinvasive Charakterisierung von Mischungsvorgängen) und Biomedizintechnik (nichtinvasive Temperaturmessung in Körpergewebe zur Überwachung der Hyperthermiebehandlung, Gewebecharakterisierung) werden erläutert. Aus verschiedenen bekannten sowie einem neuartigen, leicht anwendbaren Meßverfahren werden neue Schlüsse gezogen a) zur Bestimmung der akustisch effektiven Elementgröße von Wandlerelementen mittels Schallfeldmessungen, b) zur Qualitätssicherung im Hinblick auf Schallkopfasymmetrien und c) zur Verbesserung von Schallfeldsimulationen. / The current thesis explores how the precise knowledge of the sending and receiving sound fields of an ultrasonic transducer can contribute to the development of novel measuring techniques. Emphasis is placed on: - a novel, non-scanning method for the determination of the curvature radius of a spherical reflector, based on the analysis of the wave front curvature of the reflected sound field, - a novel non-invasive method for sound velocity measurements in fluids using the echo signals from scattering particles, and - novel conclusions on how to use well-known sound field measurement methods for transducer characterisation, as well as an introduction to a novel easy-to-use method for transducer characterisation exploiting the echo signals from scattering particles. Proof of concept is shown for all methods by simulation and measurement, and different promising improvements for further techniques are suggested: - The non-scanning method for curvature measurements makes it possible to determine reflector radii between 6 and 11 mm with an uncertainty of about 0.5 mm, provided that there is a good reflector alignment. In combination with conventional methods, a novel approach for the determination of the size of discontinuities in non-destructive testing is outlined. - The method for non-invasive sound velocity measurements allows the determination of sound velocity in homogeneous fluids with a statistical uncertainty of 0.1 %. Future improvements are suggested to allow sound velocity measurements with local resolution, which enables novel approaches for metallurgy (non-invasive characterisation of mixing processes) and biomedical engineering (non-invasive temperature control for hyperthermia treatment, tissue characterisation). - New conclusions are drawn based on well-established and a novel easy-to-implement measurement method regarding a) the determination of the acoustically effective element size of transducer elements, b) transducer asymmetries, thereby improving quality control, and c) the improvement of sound field simulations.
10

Neuartige Ultraschallmeßverfahren unter Nutzung von Schallfeldinformationen

Lenz, Michael 01 August 2013 (has links)
Die vorliegende Arbeit untersucht, wie die genaue Kenntnis der Sende- und Empfangsschallfelder eines Ultraschallwandlers zur Entwicklung neuer Meßverfahren genutzt werden kann. Insbesondere werden dargestellt: - ein neuartiges, nichtscannendes Verfahren zur Bestimmung der Krümmung eines Reflektors, basierend auf der Analyse der Wellenfrontkrümmung reflektierter Schallfelder - ein neuartiges, nichtinvasives Verfahren zur Bestimmung der Schallgeschwindigkeit in einer Flüssigkeit durch Auswertung der Echosignale von im Ausbreitungsmedium vorhandenen Streupartikeln und - ein Verfahren zur Wandlercharakterisierung durch Messungen in Fluiden mit Streupartikeln, sowie verschiedene Zuordnungen von Schallfeldmerkmalen zu spezifischen Eigenschaften eines Ultraschallwandlers. Im Zusammenspiel von Simulation und Experiment konnten die Funktionstüchtigkeit aller Meßverfahren nachgewiesen und vielversprechende innovative Ansätze für zukünftige Entwicklungen angeregt werden: 1. Das nichtscannende Verfahren zur Krümmungsmessung erlaubt bei guter Justage eine Krümmungsbestimmung von Reflektoren mit Radien zwischen 6 und 11 mm mit einer Unsicherheit von ungefähr 0,5 mm. In Kombination mit herkömmlichen scannenden Verfahren bietet es Ansätze zur präzisen Größenbestimmung von Fehlern in der zerstörungsfreien Prüfung. 2. Das Verfahren zur nichtinvasiven Schallgeschwindigkeitsmessung erlaubt eine Bestimmung von Schallgeschwindigkeiten mit einer statistischen Meßunsicherheit von 0,1 %. Mögliche Weiterentwicklungen zur Messung der Schallgeschwindigkeit mit örtlicher Auflösung und zur Gewinnung neuer Diagnosemöglichkeiten in Metallurgie (nichtinvasive Charakterisierung von Mischungsvorgängen) und Biomedizintechnik (nichtinvasive Temperaturmessung in Körpergewebe zur Überwachung der Hyperthermiebehandlung, Gewebecharakterisierung) werden erläutert. Aus verschiedenen bekannten sowie einem neuartigen, leicht anwendbaren Meßverfahren werden neue Schlüsse gezogen a) zur Bestimmung der akustisch effektiven Elementgröße von Wandlerelementen mittels Schallfeldmessungen, b) zur Qualitätssicherung im Hinblick auf Schallkopfasymmetrien und c) zur Verbesserung von Schallfeldsimulationen. / The current thesis explores how the precise knowledge of the sending and receiving sound fields of an ultrasonic transducer can contribute to the development of novel measuring techniques. Emphasis is placed on: - a novel, non-scanning method for the determination of the curvature radius of a spherical reflector, based on the analysis of the wave front curvature of the reflected sound field, - a novel non-invasive method for sound velocity measurements in fluids using the echo signals from scattering particles, and - novel conclusions on how to use well-known sound field measurement methods for transducer characterisation, as well as an introduction to a novel easy-to-use method for transducer characterisation exploiting the echo signals from scattering particles. Proof of concept is shown for all methods by simulation and measurement, and different promising improvements for further techniques are suggested: - The non-scanning method for curvature measurements makes it possible to determine reflector radii between 6 and 11 mm with an uncertainty of about 0.5 mm, provided that there is a good reflector alignment. In combination with conventional methods, a novel approach for the determination of the size of discontinuities in non-destructive testing is outlined. - The method for non-invasive sound velocity measurements allows the determination of sound velocity in homogeneous fluids with a statistical uncertainty of 0.1 %. Future improvements are suggested to allow sound velocity measurements with local resolution, which enables novel approaches for metallurgy (non-invasive characterisation of mixing processes) and biomedical engineering (non-invasive temperature control for hyperthermia treatment, tissue characterisation). - New conclusions are drawn based on well-established and a novel easy-to-implement measurement method regarding a) the determination of the acoustically effective element size of transducer elements, b) transducer asymmetries, thereby improving quality control, and c) the improvement of sound field simulations.

Page generated in 0.0433 seconds