• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spin polarization control through resonant states in an Fe/GaAs Schottky barrier

Honda, S., Itoh, H., Inoue, J., Kurebayashi, H., Trypiniotis, T., Barnes, C. H. W., Hirohata, A., Bland, J. A. C. 12 1900 (has links)
No description available.
2

Schottky contacts to In2O3

von Wenckstern, Holger, Splith, Daniel Thomas, Schmidt, Florian, Grundmann, Marius, Bierwagen, Oliver, Speck, James S. 27 May 2014 (has links) (PDF)
n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.
3

Schottky contacts to In2O3

von Wenckstern, Holger, Splith, Daniel Thomas, Schmidt, Florian, Grundmann, Marius, Bierwagen, Oliver, Speck, James S. January 2014 (has links)
n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.
4

DEFECT AND METAL OXIDE CONTROL OF SCHOTTKY BARRIERS AND CHARGE TRANSPORT AT ZINC OXIDE INTERFACES

Foster, Geoffrey M. 18 September 2018 (has links)
No description available.
5

THE ROLE OF NATIVE POINT DEFECTS AND SURFACE CHEMICAL REACTIONS IN THE FORMATION OF SCHOTTKY BARRIERS AND HIGH N-TYPE DOPING IN ZINC OXIDE

Doutt, Daniel R. 08 August 2013 (has links)
No description available.

Page generated in 0.0417 seconds