Spelling suggestions: "subject:"schottky barriers"" "subject:"schrottky barriers""
1 |
Spin polarization control through resonant states in an Fe/GaAs Schottky barrierHonda, S., Itoh, H., Inoue, J., Kurebayashi, H., Trypiniotis, T., Barnes, C. H. W., Hirohata, A., Bland, J. A. C. 12 1900 (has links)
No description available.
|
2 |
Schottky contacts to In2O3von Wenckstern, Holger, Splith, Daniel Thomas, Schmidt, Florian, Grundmann, Marius, Bierwagen, Oliver, Speck, James S. 27 May 2014 (has links) (PDF)
n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.
|
3 |
Schottky contacts to In2O3von Wenckstern, Holger, Splith, Daniel Thomas, Schmidt, Florian, Grundmann, Marius, Bierwagen, Oliver, Speck, James S. January 2014 (has links)
n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.
|
4 |
DEFECT AND METAL OXIDE CONTROL OF SCHOTTKY BARRIERS AND CHARGE TRANSPORT AT ZINC OXIDE INTERFACESFoster, Geoffrey M. 18 September 2018 (has links)
No description available.
|
5 |
THE ROLE OF NATIVE POINT DEFECTS AND SURFACE CHEMICAL REACTIONS IN THE FORMATION OF SCHOTTKY BARRIERS AND HIGH N-TYPE DOPING IN ZINC OXIDEDoutt, Daniel R. 08 August 2013 (has links)
No description available.
|
Page generated in 0.0417 seconds