• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 28
  • 15
  • 11
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 129
  • 88
  • 36
  • 34
  • 33
  • 24
  • 24
  • 24
  • 22
  • 20
  • 19
  • 17
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Seasonal variability of sea surface carbonate chemistry and temperature

Matthews, John Brian Robin 20 December 2013 (has links)
Ocean uptake of anthropogenic CO2 causes ocean acidification, a secular, global-scale decline in the pH of seawater. In order to better understand the implications of contemporary acidification for marine organisms and ecosystems, there is a need to better characterise natural variability in carbonate chemistry. In this thesis, climatological seasonal variability of sea surface pH and aragonite saturation state (OmegaA) in the open ocean is indirectly derived from other parameters of the marine CO2 system, namely total alkalinity (TA) and seawater pCO2/fCO2 (pCO2sw/fCO2sw). New monthly sea surface TA, fCO2sw and temperature climatologies are developed for this purpose, utilising newly-released observational synthesis products (PACIFICA for TA and SOCAT v2 for fCO2sw). Two versions of the new SST climatology are developed, referred to as upper and lower SST (USST and LSST), to test sensitivity to the depth range of the input observations. Annual ranges are generally found to be larger for the USST climatology, derived using observations from the upper 2 m, compared to LSST (which is based on deeper observations). Further, a seasonal cycle is found in the monthly average of the differences between these climatologies north of 30 degN, perhaps partly due to seasonal variation in near-surface stratification. The USST seasonal ranges are also found to be generally larger than in two previous SST climatologies, however, difference in the depth distribution of the input measurements is unlikely the main cause. The new monthly sea surface TA climatology extends coverage into the Nordic seas, excluded from previous climatologies. TA seasonality is found to be small outside of regions with large seasonal ranges in salinity. Large seasonal ranges in salinity and TA are found beneath the Intertropical Convergence Zone, in the Antarctic seasonal sea ice zone and in the western Greenland Sea. Non-salinity driven TA seasonality is found to be large in the Gulf of Alaska, eastern equatorial Pacific and western Greenland Sea. Compared to the Lee et al. (2006) TA climatology, substantially lower annual means and seasonal ranges are found for the subarctic Pacific, a region with greatly improved coverage courtesy of PACIFICA. The pH/OmegaA climatologies derived in the final chapter suggest pH seasonality is predominantly temperature driven in the subtropics and mainly driven by variation in salinity normalised dissolved inorganic carbon (sDIC) in the subpolar north Atlantic, western subarctic Pacific and Southern Ocean. Salinity variation is found to only exert a strong influence on pH seasonality in the western Greenland Sea. Climatological seasonal pH ranges are found to be mostly small in the tropics (<0.05), moderate in the subtropics (0.05-0.10) but very large (>0.1) in parts of the Ross, Weddell, Irminger and Iceland Seas and western subarctic Pacific gyre. OmegaA seasonality is found to be predominantly sDIC-driven everywhere except in the western Greenland Sea, with temperature variation generally being of modest influence. Seasonal cycles of pH and OmegaA are found to be in anti-phase where pH is mainly thermally driven and in-phase where pH is mainly sDIC-forced (both pH and OmegaA vary inversely with DIC). Comparison is made between the primary new pH/OmegaA climatology and various open ocean carbonate chemistry time-series. The climatology captures the general form of the climatological seasonal cycles of pH and OmegaA from the time-series, although with some differences in phasing and seasonal range. Analysing the time-series for long-term trends, I find that inter-decadal anthropogenic CO2 uptake driven pH and OmegaA declines can be modulated by trends in temperature, salinity or sTA. Investigation is also conducted into how the amplitude of pH and OmegaA seasonal cycles might change by 2100 for a subpolar and subtropical time-series. Under a high CO2 emissions scenario, the seasonal range of pH is found to be strongly enhanced for the subpolar time-series and moderately reduced for the subtropical time-series, with both being due to changes in seawater buffer capacity. / Graduate / 0425 / 0415 / robdj87@hotmail.com
22

Paleoceanography of the southern Coral Sea across the Mid-Pleistocene Transition

Russon, Thomas Ford January 2011 (has links)
A comprehensive theory explaining the relationship between periodic variations in the Earths orbital parameters and the response of the climate system remains elusive. One of the key challenges is that of the Mid-Pleistocene Transition (MPT), during which the dominant mode of glacial/interglacial climatic variability shifted without any corresponding change in the mode of orbital forcing. Subtropical climate on orbital time-scales is sensitive to variability in both the low-latitude ocean/atmosphere circulation regime and the global carbon-cycle (through its effect on atmospheric greenhouse gas levels), both of which may have played a role in the shift in mode of global climate response to orbital forcing during the MPT. This thesis presents a series of multi-proxy (foraminiferal stable isotope and trace-metal) paleoceanographic reconstructions from the subtropical southwest Pacific, as seen in marine sediment core MD06-3018, from 2470m water depth and 23ºS in the New Caledonia Trough, southern Coral Sea. The core age-model, based upon magnetic stratigraphy and orbital tuning, yields a mean sedimentation rate at the site of 20mm/ka and a core-bottom age of 1600ka. The MD06-3018 reconstruction of New Caledonia Trough deep water chemistry, based on benthic 13C measurements, shows that the spatial chemistry gradient within the Southern Ocean between deep waters entering the Tasman Sea and the open Pacific was greater during glacial (relative to interglacial) stages over at least the past 1100ka. This gradient was, however, generally reduced on the >100kyr time-scale across the MPT, consistent with it being a period of reduced deep water ventilation in both hemispheres. The MD06-3018 Mg/Ca-derived reconstruction of subtropical southwest Pacific Sea Surface Temperature (SST) shows glacial/interglacial variability of 2-3ºC but no significant trends on the >100kyr time-scale over the duration of the record. An estimate of the uncertainty associated with the SST reconstruction demonstrates that no significant changes in reconstructed southern Coral Sea mean-annual SST can be identified between interglacial stages across the MPT. It is, therefore, unlikely that regional climatic change constituted the main cause for the observed middle Pleistocene expansion of coral reef systems. The >100kyr time-scale stability of southern Coral Sea SST means that the position of the southern boundary of the Pacific warm pool has also been stable over at least the past 1500ka. Comparison with other low-latitude Pacific reconstructions shows that the early Pleistocene warm pool was consequently more hemispherically asymmetric than its present configuration, with the latter being established by ~1000ka and implying significant changes in meridional atmospheric heat and moisture fluxes prior to the MPT. On orbital time-scales, the SST reconstruction shows a clear shift from dominant 40kyr to 100kyr modes of variability over the MPT, although significant 40kyr structure is also retained into the middle/late Pleistocene. In contrast, reconstructed hydrological cycle variability (based on coupled 18O-Mg/Ca measurements) shows only limited coherence with the obliquity cycle and a stronger relationship with the precession cycle. The decoupling of the reconstructed subtropical SST and hydrological cycle responses places constraints on the extent of orbitally paced fluctuations in the low-latitude ocean/atmosphere system. Instead, comparison of the MD06-3018 SST reconstruction with others from across the lowlatitude Pacific supports a dominant role for greenhouse gas forcing in low-latitude western Pacific glacial/interglacial SST variability across the Pleistocene. The subtropical multi-proxy climate reconstructions presented here show that the timing and sense of long-term (>100kyr time-scale) changes in the low-latitude ocean/atmosphere circulation regime are consistent with that system having been important in the expansion of northern hemisphere ice-volume during the early part of the MPT. However, the subtropical reconstructions also suggest that neither the low-latitude ocean/atmosphere circulation system nor the global carbon-cycle underwent a fundamental change in mode of response to orbital forcing during the transition. Instead, the origin of the 100kyr glacial/interglacial mode was most likely related to thresholds in the dynamics of the expanding northern hemisphere icesheets, leading in turn to the existence of significant inter-hemispheric asymmetry in the orbital time-scale climate response over the middle/late Pleistocene. Summary for Non-Specialists. Over the past five million years of its history, the Earths climate has undergone a series of regular, or nearly regular, fluctuations between warmer and colder states. These fluctuations take tens to hundreds of thousands of years to occur and are known as the ‘glacial/interglacial cycles’ on account of the associated changes in ice-sheet extent in the high-latitudes. The origin of these cycles is widely held to be the regular variations in form of the Earths orbit around the sun. In spite of decades of research, however, no complete ‘orbital theory of climate’ exists, mainly because the patterns of past climate variability, as reconstructed using ‘proxies’ for variables such as surface temperature, is much more complex than that of the orbital variations themselves. It follows that processes within the Earth system, especially those associated with large ice-sheets, the carbon-cycle and the ocean circulation system, act to substantially modify the climate response to the orbital variations. Over the past ten years, new observations from both ice-cores and low-latitude marine sediment cores have suggested that the dominant system(s) involved in setting the Earths response to the orbital variations may potentially be the carboncycle and/or the low-latitude ocean/atmosphere circulation regime rather than highlatitude ice-sheet dynamics, as was generally supposed previously. If this new view is correct, it has profound implications for the general sensitivity of the climate to the carbon-cycle on a range of time-scales - making its evaluation a scientific objective of considerable current importance. This thesis presents a series of reconstructions of aspects of climate and carbon-cycle variability for the subtropical southwest Pacific, as based on proxy measurements in a marine sediment core than spans the past 1,600,000 years at around 5000 year resolution. The key focus is on an interval called the ‘Mid- Pleistocene Transition’, during which time the mode of glacial/interglacial variability changed, indicating a fundamental change in one or more aspects of the response to the orbital forcing. The study site is well placed to investigate variability in both the carbon-cycle and low-latitude ocean circulation over the climatic transition as it lies between the Southern Ocean, a key source of carbon-cycle variability and the equatorial Pacific, where the modern El-Niño system arises. By characterizing variability in these systems, the potential role played by both systems in causing the change in mode of glacial/interglacial variability can be evaluated. The key findings of the thesis are that; firstly, changes in the long-term state of the low-latitude ocean circulation system may well have been important for the expansion of northern hemisphere ice-sheets during the early part of the Mid- Pleistocene Transition. Secondly, it provides further support for a close connection between variability in the carbon-cycle and low-latitude climate on orbital timescales but suggests that there is no clear evidence for either system undergoing a fundamental change in sensitivity to the orbital forcing during the transition.
23

Biostratigraphy and microfacies of the cretaceous sediments in the Indus Basin, Pakistan

Khan, Suleman January 2013 (has links)
In this thesis I document the biostratigraphy of two Cretaceous sections in Pakistan, the Chichali Nala Section and the Moghal Kot Section. Furthermore, I document the stratigraphy of the so-called Oceanic Anoxic Events (OAEs) in the Moghal Kot Section. In addition, I establish potential links between the planktonic foraminiferal evolution and these OAEs in the Moghal Kot Section. Sea Surface Temperatures (SSTs) are established for the Valanginian time by using the TEX86 and δ18O proxies in the Chichali Nala Section. The new biostratigraphy of the Chichali Nala Section shows that the ages of the sediments are mainly Valanginian. The biostratigraphy of the Moghal Kot Section show ranges in age from the Early Aptian to Early Maastrichtian. Seven OAEs were recorded in the Moghal Kot Section based on the combined study of biostratigraphy, microfacies, and δ13C analysis. These OAEs correlate well with previously documented OAEs elsewhere, therefore the new record of the OAEs in the Moghal Kot Section confirms the widespread occurrence of these events, possibly all global in nature. A quantitative review of the planktonic foraminiferal evolution in the Moghal Kot Section indicates that the environmental changes along the OAE2 have strongly forced the evolution of the planktonic foraminifera. Conversely, no clear relationship is observed between other OAEs and planktonic foraminiferal evolution in the same section. The SST results based on the TEX86 in the Chichali Nala Section show that the surface ocean was consistently much warmer (10-12 oC) than today at the paleolatitude of ~-35o during the Valanginian time. Such warm conditions are also supported by the spore and pollen assemblages of the Chichali Nala Section. Collectively the two datasets indicate strongly that the Valanginian world was overall extremely warm. Such warming during the Valanginian is incompatible with previously suggested cooler conditions during this time period.
24

An Assessment of Hydroclimatic Trends and Mid-Range Streamflow Predictive Capacity in Four Lower Colorado River Sub-Basins

Lambeth-Beagles, Rachel Syringa January 2011 (has links)
Historical changes in hydroclimatic characteristics in four Lower Colorado River sub-basins are examined using the Mann-Kendall test for trends and Kendall's tau-b test for statistical association to better understand the processes taking place in these arid watersheds. During the historical record of 1906-2007, in general, temperatures have increased and streamflows have decreased while there has been no change in precipitation. Streamflow was found to have statistical association with annual maximum temperatures, El Nino/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Using this knowledge, two-year and five-year streamflow predictions are made using climate data to force a statistical model. We find no predictive skill at the two-year range but significant (alpha =.05) predictive skill in two of the basins at the five-year range. The dominant climate predictor for the Paria River Basin is ENSO and for the Little Colorado River Basin it is temperature.
25

A case study of insitu-aircraft observations in a waterspout producing cloud

Baskin, Clayton M. 03 1900 (has links)
Approved for public release, distribution is unlimited / An analysis of in-situ aircraft observations collected in the parent cloud of a waterspout is presented. Previous waterspout studies were confined mainly to photometric and model simulated data, no in-situ observations were made internal to the parent cloud. On 27 June 2002 the Cooperative Institute for Remotely Piloted Aircraft Studies (CIRPAS) UV-18A Twin Otter aircraft collected observations in a cloud that had developed in a cloud line, located approximately 15km south of Key West, and that formed a waterspout. This study attempts to analyze the waterspout formation process using these data and through a series of scale interactions, from the synoptic scale down to the individual cloud scale. Based upon the analyzed data a hypothetical formation process is developed. The background synoptic scale flow is shown to establish the necessary ambient shear as a key factor in the waterspout formation. The orientation of mesoscale convergent boundaries and thermodynamic processes, internal to the cloud, proved to be an essential factor in developing the vertical motion patterns necessary for formation of an organized circulation in the shear region and to provide the tipping and stretching of the resultant vortex necessary to account for the waterspout formation. This is consistent with conclusions derived from previous studies. / Captain, United States Air Force
26

Changing Oceanic Conditions on The Foraging Patterns of Cassin’s Auklets, Ptychoramphus aleuticusChanging Oceanic Conditions on The Foraging Patterns of Cassin’s Auklets, Ptychoramphus aleuticus

Flynn, Clare 01 January 2019 (has links)
Cassin’s auklet (Ptychoramphus aleuticus) reproductive success has been monitored on Southeast Farallon Island (SEFI) for the past 45 years. Their productivity has varied with oceanic conditions. The purpose of this study is to connect how oceanic conditions affect Cassin’s auklet foraging behaviors. The California Current System (CCS) can normally maintain high plankton productivity, and thus high seabird productivity, because of coastal upwelling. I hypothesized that lower upwelling and/or higher sea surface temperatures (SSTs) lead Cassin’s auklets to spend more time on intensive foraging behaviors such as flying and diving, and have less time to spend resting. I also hypothesized that they would dive more, dive deeper, and spend more time underwater in years of high SST and/or low upwelling. We deployed time depth recorders (TDRs) on 85 Cassin’s auklets on SEFI from 2008-2017 for a total of 268 foraging trips. We programmed the TDRs to record temperature and pressure every 5 seconds, and every 0.5 seconds when diving. I used the Pacific Fisheries Environmental Laboratory derived upwelling index (UI) from three months prior to the early chick-rearing season, and SST measured from SEFI during the days the TDRs were deployed. UI from three months prior and SST were not correlated. I found that in years with higher SSTs and in years with less upwelling, the Cassin’s auklets made deeper dives and stayed underwater longer. Neither higher SSTs nor lower UIs significantly affected the amount of time the auklets spent flying, diving, or resting. These results show that the physical conditions that drive the development of the California current food web influence they diving behavior of top predators.
27

Chemical characterization of biomass burning and sea spray aerosol

Jayarathne, Thilina 01 May 2017 (has links)
Particulate matter (PM) suspended in air varies in size from nanometers to micrometers and contains a wide range of chemical components, including organic compounds, black carbon (soot), inorganic minerals and metals. Atmospheric aerosols are generated from either primary sources like volcanic eruptions, re-suspended soil dust, sea spray, vegetative detritus, fossil fuel and biomass combustion emissions; or secondary atmospheric reactions via gas-to-particle conversion of atmospheric gases. Particle size, abundance, and chemical composition determine how a particle interacts with light and other atmospheric constituents (e.g. gases, water vapor) in addition to its impact on human health. While atmospheric scientists have been working on characterizing atmospheric aerosols for many years, major gaps persist in understanding the properties of many globally-important sources. This dissertation provides new understanding of the chemical composition of biomass burning and sea spray aerosols. PM emissions from biomass burning vary by fuel, and depend on fuel type and composition, moisture content, and combustion conditions. Although biomass smoke is critically important in global climate and local-regional health impacts, the physical and chemical composition of biomass burning aerosol is still not fully understood in the case of peat, agricultural residues and cooking fires. The Fire Laboratory at Missoula Experiments (FLAME) were designed to fulfill these gaps to improve our understanding in both historically undersampled and well-studied fuels while adding new instrumentation and experimental methods to provide previously unavailable information on chemical properties of biomass burning emissions. Globally-important biomass fuels were combusted in a controlled environment, and PM was chemically characterized to compute fuel based emission factors (EF) as the amount of chemical species released per unit mass of fuel burned. We showed that chemical composition of PM varies for different fuel types and certain fuels types (e.g., peat and ocote) emit considerably high concentrations of polycyclic aromatic compounds that are associated with negative health effects. We also showed that PM from biomass smoke contains fluoride for the first time, at approximately 0.1% by weight. With respect to the annual global emissions of PM due to biomass burning, this makes biomass burning an important source of fluoride to the atmosphere. Further, peatland fire emissions are one of the most understudied atmospheric aerosol sources but are a major source of greenhouse gases globally and cause severe air quality problems in Asia. This thesis provides the first field-based emissions characterization study, for samples collected at peat burning sites in Central Kalimantan, Indonesia. Using these EFs and estimates of the mass of fuel burned, it was estimated that 3.2 - 11 Tg of PM2.5 were emitted to atmosphere during 2015 El Niño peat fire episode which is ~10 % of estimated total annual PM flux for biomass burning. Overall, these studies computed more representative EFs for previously undersampled sources like peat, and previously unidentified chemical species like fluoride that can be used to update regional and global emission inventories. The concentration and composition of organic compounds in sea spray aerosol (SSA) alters its optical properties, hygroscopicity, cloud condensation, and ice nucleation properties and thus affects Earth’s radiative budget. In the past, SSA has been difficult to characterize, because of low concentrations relative to background pollutants. Nascent SSA was generated during a mesocosm, using a wave-flume at the University of California, San Diego and was characterized for saccharides and inorganic ions in order to assess their relative enrichment in fine (PM2.5) and coarse (PM10-2.5) SSA and sea surface microlayer (SSML) relative to seawater. For the first time, we showed that saccharides comprise a significant fraction of organic matter in fine and coarse SSA contributing 11 % and 27 %, respectively. Relative to sodium, saccharides were enriched 14-1314 times in fine SSA, 3-138 times in coarse SSA, but only up to 1.0-16.2 times in SSML. The saccharide and ion concentration in SSML and persistent whitecap foam was quantitatively assessed by another mesocosm study performed under controlled conditions. We demonstrated that relative to sodium, saccharides were enriched 1.7-6.4 times in SSML and 2.1-12 times in foam. Higher enrichment of saccharides in foam over the SSML indicates that surface active organic compounds become increasingly enriched on aged bubble film surfaces. Similarly, we showed that fine SSA contains saccharides characteristic of energy-related polysaccharides, while coarse SSA contains saccharides that are characteristic of structure-related polysaccharides. The ultrafiltration studies showed that structure-related polysaccharides effectively coagulate to form large particulate organic matter and size is likely the reason for their exclusion from small SSA. The enrichment of organic species in SSML, foam and SSA led to an enrichment of inorganic ions probably through chelation with organic molecules. Mean enrichment factors for major ions demonstrated the highest enrichment in fine SSA for potassium (1.3), magnesium (1.4), and calcium (1.7). Consequently, due to these organic and inorganic enrichments, SSA develops a significantly different chemical profile compared to seawater. These improved chemical profiles of SSA should be used to develop laboratory proxies to further study the transfer of organic matter across the ocean-air interface and the physical properties of SSA. . Overall, the results presented in this dissertation provide new chemical profiles for previously understudied emission sources like peatland fire emissions, and previously unquantified chemical species like F- in biomass burning emissions and enrichment of saccharides and ions in SSA. These data could be used in updating regional and global emission inventories, atmospheric modeling and human exposure studies.
28

Mitigating predictive uncertainty in hydroclimatic forecasts: impact of uncertain inputs and model structural form

Chowdhury, Shahadat Hossain, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Hydrologic and climate models predict variables through a simplification of the underlying complex natural processes. Model development involves minimising predictive uncertainty. Predictive uncertainty arises from three broad sources which are measurement error in observed responses, uncertainty of input variables and model structural error. This thesis introduces ways to improve predictive accuracy of hydroclimatic models by considering input and structural uncertainties. The specific methods developed to reduce the uncertainty because of erroneous inputs and model structural errors are outlined below. The uncertainty in hydrological model inputs, if ignored, introduces systematic biases in the parameters estimated. This thesis presents a method, known as simulation extrapolation (SIMEX), to ascertain the extent of parameter bias. SIMEX starts by generating a series of alternate inputs by artificially adding white noise in increasing multiples of the known input error variance. The resulting alternate parameter sets allow formulation of an empirical relationship between their values and the level of noise present. SIMEX is based on the theory that the trend in alternate parameters can be extrapolated back to the notional error free zone. The case study relates to erroneous sea surface temperature anomaly (SSTA) records used as input variables of a linear model to predict the Southern Oscillation Index (SOI). SIMEX achieves a reduction in residual errors from the SOI prediction. Besides, a hydrologic application of SIMEX is demonstrated by a synthetic simulation within a three-parameter conceptual rainfall runoff model. This thesis next advocates reductions of structural uncertainty of any single model by combining multiple alternative model responses. Current approaches for combining hydroclimatic forecasts are generally limited to using combination weights that remain static over time. This research develops a methodology for combining forecasts from multiple models in a dynamic setting as an improvement of over static weight combination. The model responses are mixed on a pair wise basis using mixing weights that vary in time reflecting the persistence of individual model skills. The concept is referred here as the pair wise dynamic weight combination. Two approaches for forecasting the dynamic weights are developed. The first of the two approaches uses a mixture of two basis distributions which are three category ordered logistic regression model and a generalised linear autoregressive model. The second approach uses a modified nearest neighbour approach to forecast the future weights. These alternatives are used to first combine a univariate response forecast, the NINO3.4 SSTA index. This is followed by a similar combination, but for the entire global gridded SSTA forecast field. Results from these applications show significant improvements being achieved due to the dynamic model combination approach. The last application demonstrating the dynamic combination logic, uses the dynamically combined multivariate SSTA forecast field as the basis of developing multi-site flow forecasts in the Namoi River catchment in eastern Australia. To further reduce structural uncertainty in the flow forecasts, three forecast models are formulated and the dynamic combination approach applied again. The study demonstrates that improved SSTA forecast (due to dynamic combination) in turn improves all three flow forecasts, while the dynamic combination of the three flow forecasts results in further improvements.
29

Digital Image Processing Of Remotely Sensed Oceanographic Data

Turkmen, Muserref 01 August 2008 (has links) (PDF)
Developing remote sensing instrumentation allows obtaining information about an area rapidly and with low costs. This fact offers a challenge to remote sensing algorithms aimed at extracting information about an area from the available re&not / mote sensing data. A very typical and important problem being interpretation of satellite images. A very efficient approach to remote sensing is employing discrim&not / inant functions to distinguish different landscape classes from satellite images. Various methods on this direction are already studied. However, the efficiency of the studied methods are still not very high. In this thesis, we will improve efficiency of remote sensing algorithms. Besides we will investigate improving boundary detection methods on satellite images.
30

On the role of wind driven ocean dynamics in tropical Atlantic variability

Da Silva, Meyre Pereira 16 August 2006 (has links)
The response of the tropical Atlantic Ocean to wind stress forcing on seasonal and interannual time scales is examined using an ocean data assimilation product from the Geophysical Fluid Dynamics Laboratory (GFDL), and an ocean general circulation model which incorporates a three dimensional flux correction technique to correct biases of the mean state of the ocean. On a seasonal time scale, we investigated the impact of the annual migration of the ITCZ on the exchange pathways of the northern tropical Atlantic. The results indicate that seasonal variation of the zonal slope of the thermal ridge along the boundary between the north equatorial countercurrent and north equatorial current in response to changes in the ITCZ controls, to a large extent, the amount of water participating in the equatorial circulation. These changes can be explained in terms of a simple dynamical model where local Ekman pumping dominates thermocline variation in the western part of the basin, and Rossby wave adjustment comes into play in the eastern basin. On an interannual time scale, we examined the upper heat budget of the equatorial Atlantic in order to identify the key mechanisms by which wind-driven ocean dynamics control SST variability during the onset and peak phases of the Atlantic zonal mode. It is found that, in contrast with Pacific ENSO, both Bjerknes and Ekman feedbacks act together to force the zonal mode, although their relative importance and dominance depend on season and location.

Page generated in 0.0783 seconds