• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanistic Studies of SecY-Mediated Protein Translocation in Intact Escherichia coli Cells

Park, Eunyong January 2012 (has links)
During the synthesis of secretory and membrane proteins, polypeptides move through a universally conserved protein-conducting channel, formed by the Sec61/SecY complex that is located in the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. The channel operates in two different modes depending on its binding partners. In co-translational translocation, a pathway found in all organisms, the channel associates with a translating ribosome. In post-translational translocation, the channel cooperates with either the Sec62–Sec63 complex in eukaryotes or the SecA ATPase in bacteria. Despite tremendous progress in our understanding of protein translocation over the past decades, many questions about its mechanism remain to be answered. These include (1) how the channel maintains the membrane barrier for small molecules while transporting large proteins, (2) what is the functional implication of channel oligomerization, and (3) how the channel interacts with binding partners and polypeptide substrates during translocation. To address these questions, we developed a novel in vivo method to generate both co- and post-translation translocation intermediates in intact Escherichia coli cells, such that polypeptide chains are only partially translocated through the channel. Using this method, we first demonstrated that a translocating polypeptide itself blocks small molecules from passing through an open SecY channel. A hydrophobic pore ring surrounding the polypeptide chain is vital for maintaining the membrane barrier during translocation. Next, we examined the importance of SecY oligomerization in protein translocation. Crosslinking experiments showed that SecY molecules interact with each other in native membranes, but that this self-association is greatly decreased upon insertion of polypeptide substrates. We also showed that SecY mutants that cannot form oligomers are still functional in vivo. Collectively, our data indicate that a single copy of SecY is sufficient for protein translocation. Finally, we isolated an intact co-translational translocation intermediate from E. coli cells and analyzed its structure by cryo-electron microscopy. An initial map shows a translating ribosome containing all three tRNAs is bound to one copy of the SecY channel. Analysis of a large dataset is ongoing in order to understand the structural basis of how the channel interacts with the ribosome and translocating nascent chain.
2

Structure and Function of Escherichia Coli Seca: An Essential Component of the Sec Translocase

Na, Bing 10 August 2007 (has links)
E. coli SecA is an essential component for protein translocaiton across membrane. SecA can be deleted from its N- and/or C-terminal ends without losing complementation activity. In this study, we determined the dispensity of both ends of SecA molecule. The minimal length at the SecA C-terminus is dependent on the length of the N-terminal region. SecA10-826 and SecA22-829 are the two minimal length SecAs. One more amino acid deleted at the C-terminal end completely abolished their complementation activity. A hydrophobic amino acid is required at the 826th amino acid in the minimal-length SecAs. Both SecA22-828 and SecA22-829 could form a dimer, and have decreased ATPase and protein translocation activities. The active truncated SecA mutants tended to have more soluble form than membrane-bound form, but were stably embedded in membrane. In contrast, the inactive truncated SecA mutants tended to have more membrane-bound form, but were not stable in membrane. Thus, the loss of complementation is not related to dimerization, ATPase and translocation activity but to certain extent related to their biased subcelluar localization and conformation in membrane. Isolated membranes of E coli strains were solubilized and fractionated by sucrose gradient fractionation. These membranes fractions were depleted of SecY and YidC, but contained SecD, SecF and GroEL. Proteoliposomes reconstituted from these fractionated membrane proteins were active in pOmpA translocation which required SecA and ATP. Membrane fractions from strain CK1801 in which the unc gene is deleted were reconstituted into liposomes and also showed translocation activities. Moreover, proteoliposomes reconstituted with Bacteriorodopsin alone were not active in translocation, while proteoliposomes reconstituted with Bacteriorodopsin and CK1801 membrane fractions showed elevated translocation efficiency. These data suggested that proton motive force is not obligatory for, but stimulatory to translocation of pOmA. Purified GroEL was reconstituted into lipsomes and the reconstituted proteoliposomes were active in pOmpA translocation although at lower efficiency. This translocation also required SecA and ATP. These results together suggested that translocation of pOmpA is active in the absence of SecY and YidC. In the absence of SecYEG, translocation of pOmpA requires SecA and ATP. GroEL, SecD and SecF may participate in the SecY-independent translocation.

Page generated in 0.0319 seconds