• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 29
  • 18
  • 14
  • 12
  • 7
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 223
  • 223
  • 223
  • 95
  • 94
  • 56
  • 34
  • 31
  • 27
  • 26
  • 26
  • 25
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Optimization of Optical Nonlinearities in Quantum Cascade Lasers

Bai, Jing 19 July 2007 (has links)
Nonlinearities in quantum cascade lasers (QCL¡¯s) have wide applications in wavelength tunability and ultra-short pulse generation. In this thesis, optical nonlinearities in InGaAs/AlInAs-based mid-infrared (MIR) QCL¡¯s with quadruple resonant levels are investigated. Design optimization for the second-harmonic generation (SHG) of the device is presented. Performance characteristics associated with the third-order nonlinearities are also analyzed. The design optimization for SHG efficiency is obtained utilizing techniques from supersymmetric quantum mechanics (SUSYQM) with both material-dependent effective mass and band nonparabolicity. Current flow and power output of the structure are analyzed by self-consistently solving rate equations for the carriers and photons. Nonunity pumping efficiency from one period of the QCL to the next is taken into account by including all relevant electron-electron (e-e) and longitudinal (LO) phonon scattering mechanisms between the injector/collector and active regions. Two-photon absorption processes are analyzed for the resonant cascading triple levels designed for enhancing SHG. Both sequential and simultaneous two-photon absorption processes are included in the rate-equation model. The current output characteristics for both the original and optimized structures are analyzed and compared. Stronger resonant tunneling in the optimized structure is manifested by enhanced negative differential resistance. Current-dependent linear optical output power is derived based on the steady-state photon populations in the active region. The second-harmonic (SH) power is derived from the Maxwell equations with the phase mismatch included. Due to stronger coupling between lasing levels, the optimized structure has both higher linear and nonlinear output powers. Phase mismatch effects are significant for both structures leading to a substantial reduction of the linear-to-nonlinear conversion efficiency. The optimized structure can be fabricated through digitally grading the submonolayer alloys by molecular beam epitaxy (MBE). In addition to the second-order nonlinearity, performance characteristics brought by the third-order nonlinearities are also discussed, which include third-harmonic generation (THG) and intensity dependent (Kerr) refractive index. Linear to third-harmonic (TH) conversion efficiency is evaluated based on the phase-mismatched condition. The enhanced self-mode-locking (SML) effect over a typical three-level laser is predicted, which will stimulate further investigations of pulse duration shortening by structures with multiple harmonic levels.
102

Growth and Applications of Periodically Poled Lithium Niobate Crystal Fibers

Lee, Li-Min 07 September 2010 (has links)
¡@¡@We integrated the laser-heated pedestal growth (LHPG) system with accurately controlled electrodes to build up our in situ poling system. The ZnO and MgO doped periodically poled lithium niobate crystal fiber were fabricated with the poling system. This poling system has the advantage of convenience and fast growth, but the ¡§screen effect¡¨ caused by free charges which exist near the molten zone must be eliminated. The micro swing resulted from the electric force is a feasible solution, because it can disarrange the free charges and reduce the ¡§screen effect¡¨. However, without excellently controlled micro swing, the uniformity of the poled domain pitch will loose and the conversion efficiency can not be improved. After analysis of the measured current data, the approximate system current model was presented and the proportional dependence between system current and micro swing was verified. Thus the system current was applied as the micro swing feedback signal, with that the variation of the micro swing was reduced from 25% to 15%. The stability of CO2 laser power is also a dominant factor to determine the quality of poled crystal fiber. The variation of the CO2 laser power was controlled within 1%. All the complicated works and precise control during the crystal fiber growth were accomplished with the LabVIEW program. ¡@¡@A novel and simple self-cascaded SHG + SFG scheme is presented for the generation of tunable blue/green light using ZnO doped periodically poled lithium niobate crystal fiber (PPLNCF) with a single designed pitch. A PPLNCF with a uniform period of 15.45£gm, the maximum conversion efficiency for the second harmonic generation and the cascaded SHG + SFG blue light can reach up to -9.2 dB and -31.9 dB, respectively. The 3 dB bandwidth of the tunable blue light is 3 nm (475-478 nm). In order to expand the tuning bandwidth range, a QPM gradient periodical structure was designed and can provide a 3 dB bandwidth of 65 nm for the tunable blue/green light output by simulation. We have successfully grown a crystal fiber with the domain pitch of 18.9 £gm for the C-band wavelength converter. The crystal length is 1.8 mm, the effective nonlinear coefficient of the lithium niobate crystal fiber is 18.2 pm/V that equals 0.53¡Ñdideal (34.4 pm/V). The conversion efficiency for converting the CW laser in C-band is about -59.3 dB.
103

Nonlinear Optical Properties Of Semiconductor Heterostructures

Yildirim, Hasan 01 August 2006 (has links) (PDF)
The nonlinear optical properties of semiconductor heterostructures, such as GaAsAl/GaAs alloys, are studied with analytic and numerical methods on the basis of quantum mechanics. Particularly, second and third-order nonlinear optical properties of quantum wells described by the various types of confining potentials are considered within the density matrix formalism. We consider a P&ouml / schl-Teller type potential which has been rarely considered in this area. It has a tunable asymmetry parameter, making it a good candidate to investigate the effect of the asymmetry on the nonlinear optical properties. The calculated nonlinear quantities include nonlinear absorption coefficient, second-harmonic generation, optical rectification, third-harmonic generation and the intensity-dependent refractive index. The effects of the DC electric field on the corresponding nonlinearities are also studied. The results are in good agreement with the results obtained in other types of quantum wells, such as square and parabolic quantum wells. The effects of the Coulomb interaction among the electrons on the nonlinear intersubband absorption are considered within the rotating wave approximation. The result is applied to a Si-delta-doped, square quantum well in which the Coulomb interaction among the electrons are relatively important, since there has been no work on the nonlinear absorption spectrum of the Si-delta-doped quantum well. The results are found to be new and interesting, especially when a DC electric field is included in the calculations.
104

The Applications of Two-photon Confocal Microscopy and Micro-spectroscopy¡GSHG imaging of Teeth and KTP

Wang, Yung-Shun 23 June 2000 (has links)
In this study, we have developed a high performance multi-photon microscopic system to perform second- harmonic (SH) imaging on a tooth and a KTP crystal . The high sensitivity of the system allows acquisition rate of 300 seconds/frame with resolution at 512¡Ñ512 pixels. The surface SH signal generated from the tooth and the KTP crystal is also carefully verified through micro-spectroscopy, polarization rotation and wavelength tuning. In this way, we can ensure the authenticity of the signal. KTP crystal and the enamel that encapsulates the dentine is known to possess highly ordered structures. The anisotropy of the structure is revealed in the microscopic SH images of the tooth and the KTP crystal samples.
105

Laser Scanning Transmission mode Second-harmonic generation Microscope

Chen, Jian-Cheng 04 July 2001 (has links)
In this study, we have successfully developed a high performance transmission mode Laser scanning for SHG imaging. This setup is capable of acquiring images of size 512¡Ñ512 pixels at a rate of 5.4 seconds/frame. The of samples can thus be imaged, which reflects the samples¡¦ structure and symmetry.
106

Harmonic generation microscopy with an optical parametric oscillator on dental section

Lin, Chin-Jen 06 July 2003 (has links)
In this study we demonstrate the use of third harmonic (TH) and second harmonic (SH) generation in imaging dental sections. Teeth are the hardest and most indestructible part in human body. The TH and SH greatly facilitate observation of porous structures and collagen within the dental sections, respectively. Strong SH has been found on various biological specimens, such as collagen, potato starch, and skeletal muscles. These materials all possess periodical nano-structures that are often referred as (nonlinear) bio-photonic structures. In particular, collagen is an extra-cellular structural protein and is a major component of bone, cartilage, skin, and other tissues. Collagen fibrils have a triple-helical structure and it is believed that this structure enables collagen to generate SH signal from a wide range of wavelengths in the infrared region. For comparison, microtubule structures within dentin, due to its large index mismatch with surrounding, can be clearly seen with THG imaging. The THG also facilitate observation of prismatic structures in enamel. The successful construction of a multi-photon laser scanning microscope that can operate in both reflection and transmission modes is the key for this study. A femtosecond, sync-pumped optical parametric oscillator (OPO) is used to generate second and third harmonics from dental sections. Dental sections have large index of refraction¡]n~1.68¡^and scatter visible light severely. The employment of excitation wavelength at 1260 nm greatly reduces scattering and absorption within the sample. Its corresponding SH and TH wavelengths are at 630 nm and 420 nm, respectively. Additionally, 3-D structural views are also reconstructed from the optically sectioned images by the use of specialized 3D image processing software.
107

Design, simulation, and characterization toolset for nano-scale photonic crystal devices

Reinke, Charles M. 04 December 2009 (has links)
The objective of this research is to present a set of powerful simulation, design, and characterization tools suitable for studying novel nanophotonic devices. The simulation tools include a three-dimensional finite-difference time-domain code adapted for parallel computing that allows for a wide range of simulation conditions and material properties to be studied, as well as a semi-analytical Green's function-based complex mode technique for studying loss in photonic crystal waveguides. The design tools consist of multifunctional photonic crystal-based template that has been simulated with nonlinear effects and measured experimentally, and planar slab waveguide structure that provides highly efficient second harmonic generation is a chip-scale device suitable for photonic integrated circuit applications. The characterization tool is composed of a phase-sensitive measurement system using a lock-in amplifier and high-precision optical stages, suitable for probing the optical characteristics of nanoscale devices. The high signal-to-noise ratio and phase shift data provided by the lock-in amplifier allow for accurate transmission measurements as well as a phase spectrum that contains information about the propagation behavior of the device beyond what is provided by the amplitude spectrum alone.
108

Analysis of second harmonic generation at a free boundary for oblique incidence

Bender, Frank Alexander 30 August 2010 (has links)
This thesis investigates the generation of second harmonic bulk waves in the presence of a free boundary. Second harmonic waves have proven to be useful in the field of nondestructive evaluation to detect fatigue in a material at an early stage. Since most experimental setups include a free surface, the influence of such a boundary is of significant practical interest. As a result, the objective of this research is to develop a quantitative understanding of the complete process of second harmonic generation at a free boundary. This research shows that the interaction of primary waves (with each other) in the nonlinear framework leads to the generation of second harmonic bulk waves. We distinguish between self-interaction of a single primary wave and the cross-interaction of two different primary waves. The proposed approach uses the perturbation method to solve the nonlinear equations of motion, and shows two fundamentally different solutions. In the case of resonance, the secondary waves grow with propagation distance. This is the most important practical case, since the growing amplitudes of these waves should be easier to experimentally measure. In the second, non-resonant case, the amplitudes of the secondary waves are constant. The complete process of second harmonic generation is analyzed for an incident Pand an incident SV-wave, with the primary and secondary fields given. Finally, the degenerate case of normal incidence is presented. Normal and oblique incidence are compared with regard to their feasibility in experimental setups. The specific behavior of second harmonic waves propagating in aluminum is numerically determined. These results enable a variety of physical insights and conclusions to be drawn from the analytical and numerical investigations.
109

Epioptics of stepped silicon surfaces

Ehlert, Robert 16 June 2011 (has links)
Spectroscopic second-harmonic generation (SHG) and reflectance-anisotropy spectroscopy (RAS) are used to probe molecular adsorption on clean reconstructed single-domain stepped Si(001) in ultra-high vacuum (UHV). We implement a simplified bond hyperpolarizability model (SBHM) as a common microscopic analysis for SHG and RAS. Three different scenarios are studied: (i) The dissociative adsorption of molecular hydrogen on dangling bonds of D[subscript B] step-edges. (ii) Structural changes to rebonded r-D[subscript B] steps induced by exposure to atomic hydrogen. (iii) The adsorption of cyclopentene on Si(001)(2x1) terrace dimers in a [2+2] cycloaddition pathway. Using the SBHM we develop a new optical fingerprinting method to isolate, identify and monitor individual types of bonds (e.g. dimers, rebonds, dangling bonds, backbonds) and their chemical activity on a single-domain stepped Si(001) surface using nonresonant, but rotationally-anisotropic, second-harmonic generation (RA-SHG). The methods presented here will be applicable to many material systems and allow to track, in-situ and in real-time, the chemical action of adsorbates on surfaces. / text
110

Nanoscale engineering of semiconductor heterostructures for quadratic nonlinear optics and multiphoton imaging

Zieliński, Marcin 09 February 2011 (has links) (PDF)
Nonlinear coherent scattering phenomena from single nanoparticles have been recently proposed as alternative processes for fluorescence in multiphoton microscopy staining. Commonly applied nanoscale materials, however, have reached a certain limit in size dependent detection efficiency of weak nonlinear optical signals. None of the recent efforts in detection of second-harmonic generation (SHG), the lowest order nonlinear process, have been able to cross a ~40 nm size barrier for nanoparticles (NPs), thus remaining at the level of "large" nanoscatterers, even when resorting to the most sensitive detection techniques such as single-photon counting technology. As we realize now, this size limitation can be significantly lowered when replacing dielectric insulators or wide gap semiconductors by direct-gap semiconducting quantum dots (QDs). Herein, a new type of highly nonlinear nanoprobes is engineered in order to surpass above mentioned size barrier at the single nanoparticle scale. We consider two-photon resonant excitation in individual zinc-blende CdTe QDs of about 12.5 nm diameter, which provide efficient coherent SHG radiation, as high as 105 Hz, furthermore exhibiting remarkable sensitivity to spatial orientation of their octupolar crystalline lattice. Moreover, quantum confinement effects have been found to strongly contribute to the second-order nonlinear optical susceptibility χ(2) features. Quantitative characterization of the χ(2) of QDs by way of their spectral dispersion and size dependence is therefore undertaken by single particle spectroscopy and ensemble Hyper-Rayleigh Scattering (HRS) studies. We prove that under appropriate conditions, χ(2) of quantum confined semiconducting structures can significantly exceed that of bulk. Furthermore, a novel type of semiconducting hybrid rod-on-dot (RD) QDs is developed by building up on crystalline moieties of different symmetries, in order to increase their effective quadratic nonlinearity while maintaining their size close to a strong quantum confinement regime. The new complex hybrid χ(2) tensor is analyzed by interfering the susceptibilities from each component, considering different shape and point group symmetries associated to octupolar and dipolar crystalline structures. Significant SHG enhancement is consequently observed, exceeding that of mono-compound QDs, due to a coupling between two nonlinear materials and slower decoherence, which we attribute to the induced spatial charge separation upon photoexcitation.

Page generated in 0.1147 seconds