• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

3D Numerical Modelling of Secondary Current in Shallow River Bends and Confluences

Shaheed, Rawaa January 2016 (has links)
Secondary currents are one of the important features that characterize flow in river bends and confluences. Fluid particles follow a helical path instead of moving nearly parallel to the axis of the channel. The local imbalance between the vertically varying centrifugal force and the cross-stream pressure gradient results in generating the secondary flow and raising a typical motion of the helical flow. A number of studies, including experimental or mathematical, have been conducted to examine flow characteristics in curved open channels, river meanders, or confluences. In this research, the influence of secondary currents is studied on the elevation of water surface and the hydraulic structures in channel bends and confluences by employing a 3D OpenFOAM numerical model. The research implements the 3D OpenFOAM numerical model to simulate the horizontal distribution of the flow in curved rivers. In addition, the progress in unraveling and understanding the bend dynamics is considered. The finite volume method in (OpenFOAM) software is used to simulate and examine the behavior of secondary current in channel bends and confluences. Thereafter, a comparison between the experimental data and a numerical model is conducted. Two sets of experimental data are used; the data provided by Rozovskii (1961) for sharply curved channel, and the dataset provided by Shumate (1998) for confluent channel. Two solvers in (OpenFOAM) software were selected to solve the problem regarding the experiment; InterFoam and PisoFoam. The InterFoam is a transient solver for incompressible flow that is used with open channel flow and Free Surface Model. The PisoFoam is a transient solver for incompressible flow that is used with closed channel flow and Rigid-Lid Model. Various turbulence models (i.e. Standard k-ε, Realizable k-ε, LRR, and LES) are applied in the numerical model to assess the accuracy of turbulence models in predicting the behaviour of the flow in channel bends and confluences. The accuracies of various turbulence models are examined and discussed.
12

Turbine Passage Vortex Response to Upstream Periodic Disturbances

Scott, Mitchell Lee January 2020 (has links)
No description available.
13

Methodology Development and Investigation of Turbofan Engine Response to Simultaneous Inlet Total Pressure and Swirl Distortion

Frohnapfel, Dustin Joseph 08 April 2019 (has links)
As a contribution to advancing turbofan engine ground test technology in support of propulsion system integration in modern conceptual aircraft, a novel inlet distortion generator (ScreenVaneTM) was invented. The device simultaneously reproduces combined inlet total pressure and swirl distortion elements in a tailored profile intended to match a defined turbofan engine inlet distortion profile. The device design methodology was intended to be sufficiently generic to be utilized in support of any arbitrary inlet distortion profile yet adequately specific to generate high-fidelity inlet distortion profile simulation. For the current investigation, a specific inlet distortion profile was defined using computational analysis of a conceptual boundary layer ingesting S-duct turbofan engine inlet. The resulting inlet distortion profile, consisting of both total pressure and swirl distortion elements, was used as the objective profile to be matched by the ScreenVane in a turbofan engine ground test facility. A ScreenVane combined inlet total pressure and swirl distortion generator was designed, computationally analyzed, and experimentally validated. The design process involved specifying a total pressure loss screen pattern and organizing a unique arrangement of swirl inducing turning vanes. Computational results indicated that the ScreenVane manufactured distortion profile matched the predicted S-duct turbofan engine inlet manufactured distortion profile with excellent agreement in pattern shape, extent, and intensity. Computational full-field total pressure recovery and swirl angle profiles matched within approximately 1% and 2.5° (RMSD), respectively. Experimental turbofan engine ground test results indicated that the ScreenVane manufactured distortion profile matched the predicted S-duct turbofan engine inlet manufactured distortion profile with excellent agreement in pattern shape, extent, and intensity. Experimental full-field total pressure recovery and swirl angle profiles matched within approximately 1.25% and 3.0° (RMSD), respectively. Following the successful reproduction of the S-duct turbofan engine inlet manufactured distortion profile, a turbofan engine response evaluation was conducted using the validated ScreenVane inlet distortion generator. Flow measurements collected at discrete planes immediately upstream and downstream of the fan rotor isolated the component for performance analysis. Based on the results of this particular engine and distortion investigation, the adiabatic fan efficiency was negligibly altered while operating with distorted inflow conditions when compared to nominal inflow conditions. Fuel flow measurements indicated that turbofan engine inlet air mass flow specific fuel consumption increased by approximately 5% in the presence of distortion. While a single, specific turbofan engine inlet distortion profile was studied in this investigation, the ScreenVane methodology, design practices, analysis approaches, manufacturing techniques, and experimental procedures are applicable to any arbitrary, realistic combined inlet total pressure and swirl distortion. / Doctor of Philosophy / As a contribution to advancing turbofan engine ground test technology in support of propulsion system integration in modern conceptual aircraft, a novel inlet distortion generator (ScreenVaneTM) was invented. The device simultaneously reproduces combined inlet total pressure and swirl distortion elements in a tailored profile intended to match a defined turbofan engine inlet distortion profile. The device design methodology was intended to be sufficiently generic to be utilized in support of any arbitrary inlet distortion profile yet adequately specific to generate high-fidelity inlet distortion profile simulation. For the current investigation, a specific inlet distortion profile was defined using computational analysis of a conceptual boundary layer ingesting S-duct turbofan engine inlet. The resulting inlet distortion profile, consisting of both total pressure and swirl distortion elements, was used as the objective profile to be matched by the ScreenVane in a turbofan engine ground test facility. A ScreenVane combined inlet total pressure and swirl distortion generator was designed, computationally analyzed, and experimentally validated. The design process involved specifying a total pressure loss screen pattern and organizing a unique arrangement of swirl inducing turning vanes. Computational and experimental results indicated that the ScreenVane manufactured distortion profile matched the predicted S-duct turbofan engine inlet manufactured distortion profile with excellent agreement in pattern shape, extent, and intensity. Following the successful reproduction of the S-duct turbofan engine inlet manufactured distortion profile, a turbofan engine response evaluation was conducted using the validated ScreenVane inlet distortion generator. Flow measurements collected at discrete planes immediately upstream and downstream of the fan rotor isolated the component for performance analysis. Based on the results of this particular engine and distortion investigation, the adiabatic fan efficiency was negligibly altered while operating with distorted inflow conditions when compared to nominal inflow conditions. Fuel flow measurements indicated that turbofan engine inlet air mass flow specific fuel consumption increased in the presence of distortion. While a single, specific turbofan engine inlet distortion profile was studied in this investigation, the ScreenVane methodology, design practices, analysis approaches, manufacturing techniques, and experimental procedures are applicable to any arbitrary, realistic combined inlet total pressure and swirl distortion.
14

Mixing of Transverse Jets in Open Channel Bends

Schreiner, Helene Katherine 29 August 2023 (has links)
Water quality in river systems is an important issue, and relies on various factors including our ability to predict how effluents from outfalls mix with river water. However, predicting mixing in rivers, and especially in river bends, remains a difficult problem to solve. The goal of this project is to develop a comprehensive picture of the mixing mechanisms of an effluent jet in a river bend. This is done with experiments in both bend flumes in the University of Ottawa Water Resources Engineering Laboratory. The large bend flume is 1 m in width, and contains a single 135° bend of radius 1.5 m, and the small flume has a channel width of 0.2 m with a 135° bend of radius 0.3 m. The experiments in the large flume used acoustic Doppler velocimeters to measure velocity, and the experiments in the small flume used particle image velocimetry to track flow fields. Large eddy simulation (LES) were also completed using the same channel geometry as the small flume. To complete the parametric analysis on mixing of a neutrally buoyant effluent jet in a channel bend, 35 flow conditions, from seven channel aspect ratios and five momentum ratios, are modelled using LES. Each flow condition is also modelled without the jet present. Particle image velocimetry data from the small bend flume validates the LES models. Additionally, acoustic Doppler velocimeter tests were completed in the large bend flume under two different flume flow rates, two jet flow rates, and two aspect ratios. These models and measurements provide a broad range of the parameters under investigation. The experiments in the large bend flume establish the shape of the jet's trajectory within the channel bend, and how it differs from a trajectory in a straight crossflow. From these experiments, it is established that the centre position of the secondary circulation cell is an important parameter for determining the position of the jet. Through the LES models, more details of the 3D velocity and effluent distributions are available, allowing for a detailed analysis of how the secondary circulation develops and how the jet vortices change the development patterns. A method for clustering instantaneous vortices to separate sub-cells of secondary circulation is established, and is used to set a baseline for the development of secondary flow in a channel bend without a jet. The effect of an added jet was investigated in detail for a single flow condition, and then with machine learning techniques to develop a parametrical model incorporating both channel and jet flow conditions. The best performing machine learning model for the parametrisation of secondary flow cells with the jet is the ANFIS model coupled with a decision tree classifying the presence of each sub-cell; without the jet, the best-performing model is the ANFIS model without any additional classification. The effluent distribution is well-characterised using multiple linear regression. The addition of a jet changes the relative strengths of secondary circulation sub-cells and their circulation development and retention characteristics, though the total circulation in the bend is not strongly affected by the jet.
15

Transition to turbulent flow in finite length curved pipe using nek5000

Hashemi, Seyyed Amirreza 20 January 2016 (has links)
No description available.
16

Turbulent Rectangular Compound Open Channel Flow Study Using Multi-Zonal Approach

Pu, Jaan H. 29 December 2018 (has links)
Yes / In this paper, an improved Shiono-Knight model (SKM) has been proposed to calculate the rectangular compound open channel flows by considering a Multi-Zonal (MZ) approach in modelling turbulence and secondary flows across lateral flow direction. This is an effort to represent natural flows with compound shape more closely. The proposed model improves the estimation of secondary flow by original SKM model to increase the accuracy of depthaveraged velocity profile solution formed within the transitional region between different sections (i.e. between main-channel and floodplain) of compound channel. This proposed MZ model works by sectioning intermediate zones between floodplain and main-channel for running computation in order to improve the modelling accuracy. The modelling results have been validated using the experimental data by national UK Flood Channel Facility (FCF). It has been proven to work reasonably well to model secondary flows within the investigated compound channel flow cases and hence produce better representation to their flow lateral velocity profile.
17

Performance optimization of a subsonic Diffuser-Collector subsystem using interchangeable geometries

Boehm, Brian Patrick 09 January 2013 (has links)
A subsonic wind tunnel facility was designed and built to test and optimize various diffuser-collector box geometries at the one-twelfth scale.  The facility was designed to run continuously at an inlet Mach number of 0.42 and an inlet hydraulic diameter Reynolds number of 340,000. Different combinations of diffusers, hubs, and exhaust collector boxes were designed and evaluated for overall optimum performance. Both 3-hole and 5-hole probes were traversed into the flow to generate multiple diffuser inlet and collector exit performance profile plots. Surface oil flow visualization was performed to gain an understanding of the complex 3D flow structures inside the diffuser-collector subsystem. The cutback radial hardware was found to increase the subsystem pressure recovery by over 10% from baseline resulting in an approximate 1% increase in gas turbine power output. / Master of Science
18

Aerodynamic performance of a transonic turbine blade passage in presence of upstream slot and mateface gap with endwall contouring

Jain, Sakshi 27 January 2014 (has links)
The present study investigates mixed out aerodynamic loss coefficient measurements for a high turning, contoured endwall passage under transonic operating conditions in presence of upstream purge slot and mateface gap. The upstream purge slot represents the gap between stator-rotor interface and the mateface gap simulates the assembly feature between adjacent airfoils in an actual high pressure turbine stage. While the performance of the mateface and upstream slot has been studied for lower Mach number, no studies exist in literature for transonic flow conditions. Experiments were performed at the Virginia Tech's linear, transonic blow down cascade facility. Measurements were carried out at design conditions (isentropic exit Mach number of 0.87, design incidence) without and with coolant blowing. Upstream leakage flow of 1.0% coolant to mainstream mass flow ratio (MFR) was considered with the presence of mateface gap. There was no coolant blowing through the mateface gap itself. Cascade exit pressure measurements were carried out using a 5-hole probe traverse at a plane 1.0Cax downstream of the trailing edge for a planar geometry and two contoured endwalls. Spanwise measurements were performed to complete the entire 2D loss plane from endwall to midspan, which were used to plot pitchwise averaged losses for different span locations and loss contours for the passage. Results reveal significant reduction in aerodynamic losses using the contoured endwalls due to the modification of flow physics compared to a non contoured planar endwall. / Master of Science
19

Method development for investigation of real effects on flow around vanes

Mårtensson, Jonathan January 2010 (has links)
<p>In the development of turbo machinery components it's desirable to not spend more time than necessary when setting up aero-thermal calculations to investigate uncertainties in the design. This report aims to describe general thoughts used in the development of an ICEM-mesh script and the possible configurations in the script file which enables the user to build mesh-grids with/without clearance gap at the hub and/or shroud for different blade geometries. It also aims to illustrate the performance analysis made on the Vinci LH2 turbine, a next generation upper stage engine to the Ariane 5 rocket, in which the effect of the tip gap size on the efficiency has been studied.</p><p>The calculations made have shown good agreement with experimental data. The efficiency loss due to the mixing of fluid where leakage flow passes the tip gap, which results in growth of a strong vortex, and the fluid passing the blade tip, with almost no work extracted from it, has shown a quite linear efficiency dependence depending on the tip gap size.</p>
20

Method development for investigation of real effects on flow around vanes

Mårtensson, Jonathan January 2010 (has links)
In the development of turbo machinery components it's desirable to not spend more time than necessary when setting up aero-thermal calculations to investigate uncertainties in the design. This report aims to describe general thoughts used in the development of an ICEM-mesh script and the possible configurations in the script file which enables the user to build mesh-grids with/without clearance gap at the hub and/or shroud for different blade geometries. It also aims to illustrate the performance analysis made on the Vinci LH2 turbine, a next generation upper stage engine to the Ariane 5 rocket, in which the effect of the tip gap size on the efficiency has been studied. The calculations made have shown good agreement with experimental data. The efficiency loss due to the mixing of fluid where leakage flow passes the tip gap, which results in growth of a strong vortex, and the fluid passing the blade tip, with almost no work extracted from it, has shown a quite linear efficiency dependence depending on the tip gap size.

Page generated in 0.0861 seconds