• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Analýza rychlostních a tlakových polí kapaliny, využitím křivočarých souřadnic / Analysis of the Velocity and Pressure Fields of the Liquid Using Curvilinear Coordinates

Stejskal, Jiří January 2017 (has links)
This work introduces a new method of hydraulic design of a centrifugal pump impeller. This method is based on a geometrical approach employing curvilinear coordinates that are used to formulate both the axisymmetrical flow model in a meridional shape and the final model of flow in a blade cascade taking into account the full 3D shape of the impeller blade. The solution to this model then directly provides the guidelines for shaping the impeller blade in order to suppress the secondary flows, thus increasing the impeller efficiency, which is demonstrated on a real impeller design case. The partial differential equations describing the flow in the blade cascade are numerically solved piecewise on each particular stream surface, which leads to a significant reduction of computational time.
32

Design and optimisation of innovative electronic cooling heat sinks with enhanced thermal performances using numerical and experimental methods / Conception et optimisation de dissipateurs thermiques de refroidissement électronique innovants

Mehra, Bineet 08 March 2019 (has links)
Cette thèse de doctorat s’intéresse aux mécanismes d’amélioration des transferts dans des géométries de dissipateurs thermiques à plaques et ailettes. Une première partie est consacrée à l’étude d’une configuration académique à l’aide de simulations numériques visant à obtenir une amélioration du transfert de chaleur conjugué en modifiant uniquement par des découpes la forme géométrique des ailettes planes conductrices. Une analyse locale approfondie de l’écoulement et des champs thermiques a été effectuée avec notamment le principe de synergie locale, des champs de vitesse et de gradients thermiques, pour comprendre l’effet des modifications géométriques. Ce mémoire présente également le développement de dissipateurs aux performances thermo-aérauliques augmentées pour des applications de refroidissement de coffrets électronique embarqués. L’intensification des transferts thermiques est obtenue par la génération d’écoulements secondaires qui provoquent un brassage de fluide et réduisent la résistance thermique à la paroi en perturbant le développement de la couche limite thermique. Différentes configurations de dissipateurs avec deux types de générateurs d’écoulements secondaires, paires d’ailettes Delta et protrusions, ont été étudiées numériquement, en employant une modélisation de type « RANS ». Les performances thermo-aérauliques des géométries munies de générateurs de vorticité ont été comparées à celle d’un dissipateur thermique de référence « lisse ». Des prototypes ont également été fabriqués et testés sur un banc expérimental spécifiquement développé pour réaliser des mesures des performances globales en termes de puissance thermique et de pertes de charge. Les résultats expérimentaux et numériques ont été confrontés afin de qualifier les simulations réalisées. Par la suite, une étude d’optimisation employant l’analyse factorielle Taguchi a été utilisée afin d’optimiser les paramètres géométriques des dissipateurs retenus. Deux fonctions objectif ont été considérées : la maximisation du facteur de performance thermique à iso puissance de ventilation (PEC) et la réduction de la température moyenne de paroi du dissipateur par rapport au cas de référence. L’analyse des performances thermo-aérauliques globales des géométries étudiées a été complétée par une analyse qualitative locale des champs thermiques et d’écoulement notamment avec le principe de synergie. / This doctoral thesis focuses on mechanisms of heat transfer enhancement in plate and fin heat sink geometries. First part of the thesis is dedicated to study an academic configuration using numerical simulations to achieve an improvement in conjugate heat transfer by modifying only the geometrical shape (through punching) of the conductive plane fins. An in-depth local analysis of the flow and thermal fields was carried out with the local synergy principle, velocity and thermal gradients, to understand the effect of geometric modifications. This thesis also presents the development of heat sinks with increased thermo-hydraulic performance for on-board electronic box cooling applications. The intensification of the heat transfer is obtained by the generation of secondary flows which cause an intensive mixing of fluid and reduces the thermal resistance to the wall by disrupting the development of the thermal boundary layer. Different heat sink geometries with two types of secondary flow generators : delta winglet pair and protrusions were numerically studied using RANS approach. The thermo-hydraulic performances of the geometries equipped with vortex generators were compared with that of a smooth reference heat sink. The prototypes were also manufactured and tested on an experimental bench specifically designed to perform global performance measurements in terms of thermal power and pressure drops. Experimental and numerical results were compared to qualify the simulations performed. Subsequently, an optimization study using Taguchi factorial analysis was used to optimize the geometrical parameters of the chosen dissipaters. Two objective functions were considered : maximization of either iso-pumping power performance criteria (PEC) or average wall temperature of the dissipaters compared to the reference case. The global thermo-hydraulic performance analysis of the studied geometries was completed by a qualitative analysis of local flow and thermal fields, in particular with the local field synergy principle.
33

Numerical and Experimental Investigations of Design Parameters Defining Gas Turbine Nozzle Guide Vane Endwall Heat Transfer

Rubensdörffer, Frank G. January 2006 (has links)
The primary requirements for a modern industrial gas turbine consist of a continuous trend of an increasing efficiency combined with very low emissions in a robust, cost-effective manner. To fulfil these tasks a high turbine inlet temperature together with advanced dry low NOX combustion chambers are employed. These dry low NOX combustion chambers generate a rather flat temperature profile compared to previous generation gas turbines, which have a rather parabolic temperature profile before the nozzle guide vane. This means that the nozzle guide vane endwall heat load for modern gas turbines is much higher compared to previous generation gas turbines. Therefore the prediction of the nozzle guide vane flow field and endwall heat transfer is crucial for the engineering task of the design layout of the vane endwall cooling system. The present study is directed towards establishing new in-depth aerodynamic and endwall heat transfer knowledge for an advanced nozzle guide vane of a modern industrial gas turbine. To reach this objective the physical processes and effects which cause the different flow fields and the endwall heat transfer pattern in a baseline configuration, a combustion chamber variant, a heat shield variant without and with additional cooling air and a cavity variant without and with additional cooling air have been investigated. The variants, which differ from the simplified baseline configuration, apply design elements which are commonly used in real modern gas turbines. This research area is crucial for the nozzle guide vane endwall heat transfer, especially for the advanced design of the nozzle guide vane of a modern industrial gas turbine and has so far hardly been investigated in the open literature. For the experimental aerodynamic and endwall heat transfer research of the baseline configuration of the advanced nozzle guide vane geometry a new low pressure, low temperature test facility has been developed, designed and constructed, since no experimental heat transfer data exist in the open literature for this type of vane configuration. The new test rig consists of a linear cascade with the baseline configuration of the advanced nozzle guide vane geometry with four upscaled airfoils and three flow passages. For the aerodynamic tests the two middle airfoils and the hub and the tip endwall are instrumented with pressure taps to monitor the Mach number distribution. For the heat transfer tests the temperature distribution on the hub endwall is measured via thermography. The analysis of these measurements, including comparisons to research in the open literature shows that the new test rig generates accurate and reproducible results which give confidence that it is a reliable tool for the experimental aerodynamic and heat transfer research on the advanced nozzle guide vane of a modern industrial gas turbine. Previous own research work together with the numerical analysis performed in another part of the project as well as conclusions from a detailed literature study lead to the conclusion that advanced Navier-Stokes CFD tools with the v2-f turbulence model are most suitable for the calculation of the flow field and the endwall heat transfer of turbine vanes and blades. Therefore this numerical tool, validated against different vane and blade geometries and for different flow conditions, has been chosen for the numerical aerodynamic and endwall heat transfer research of the advanced nozzle guide vane of a modern industrial gas turbine. The evaluation of the numerical and experimental investigations of the baseline configuration of the advanced design of a nozzle guide vane shows the flow field of an advanced mid-loaded airfoil design with the features to reduce total airfoil losses. For the hub endwall of the baseline configuration of the advanced design of a nozzle guide vane the flow characteristics and heat transfer features of the classical vane endwall secondary flow model can be detected with a very weak intensity and geometric extension compared to the studies of less advanced vane geometries in the open literature. A detailed analysis of the numerical simulations and the experimental data showed very good qualitative and quantitative agreement for the three-dimensional flow field and the endwall heat transfer. These findings, together with the evaluations obtained from the open literature, lead to the conclusions that selected CFD software Fluent together with the applied v2-f turbulence model exhibits a high level of general applicability and is not tuned to a special vane or blade geometry. Therefore the CFD code Fluent with the v2-f turbulence model has been selected for the research of the influence of the several geometric variants of the baseline configuration on the flow field and the hub endwall heat transfer of the advanced nozzle guide vane of a modern industrial gas turbine. Most of the vane endwall heat transfer research in the open literature has been carried out only for baseline configurations of the flow path between combustion chamber and nozzle guide vane. Such a simplified geometry consists of a long, planar undisturbed approach length upstream of the nozzle guide vane. The design of real modern industrial gas turbines however requires often significant variations from this baseline configuration consisting of air-cooled heat shields and purged cavities between the combustion chamber and the nozzle guide vane. A detailed evaluation of the flow field and the endwall heat transfer shows major differences between the baseline and the heat shield configuration. The heat shield in front of the airfoil of the nozzle guide vane influences the secondary flow field and the endwall heat transfer pattern strongly. Additional cooling air, released under the heat shield has a distinctive influence as well. Also the cavity between the combustion chamber and the nozzle guide vane affects the secondary flow field and the endwall heat transfer pattern. Here the influence of additional cavity cooling air is more decisive. The results of the detailed studies of the geometric variants are applied to formulate guidelines for an optimized design of the flow path between the combustion chamber and the nozzle guide vane and the nozzle guide vane endwall cooling configuration of next-generation industrial gas turbines. / QC 20100917
34

Hydro-mechanical analysis of breach processes due to levee failure

Liu, Zhenzhen 03 July 2015 (has links)
La rupture des barrages et des digues en terre est susceptible d’avoir des conséquences importantes en aval et dans les zones protégées. Nous avons mené une analyse hydro-mécanique de la formation et du développement de brèche destinée à améliorer la précision des approches actuelles. Dans le cas de l’érosion interne, un modèle d’agrandissement de conduit a été proposé pour modéliser la rupture des digues et barrages en terre par écoulement concentré. Ce modèle tient compte de l’érosion du sol par un écoulement de conduit turbulent. En ce qui concerne l’élargissement de la brèche, un modèle simple d’estimation de la longueur critique d’afouillement par “headcut” est proposé, fonction de la résistance du sol à la traction. Ce modèle est en bon accord avec les résultats numériques obtenus par équilibre limite. Un modèle simplifé pour la contrainte latérale sur les parois de la brèche a ensuite été proposé. Ce modèle tient compte des écoulements secondaires. Il montre que la contrainte latérale peut être plus grande que la contrainte de fond, suivant la situation. Finalement, une expérimentation de grande dimension de rupture de barrage par erosion de conduit a été modélisée avec le modèle d’érosion de conduit proposé, et quelques composantes des modèles d’élargissement de brèche proposés. L’élargissement de la brèche par paliers a été reproduite au début du processus. Les perspectives de validation et d'application des modèles proposés sont discutées. / The failure of embankment dams and levees can have serious consequence in floodplains. Hydro-mechanical analyses of the breach processes were conducted to develop the accurate estimation of the failure of embankment dams and levees. Considering the internal erosion process, a pipe enlargement model was proposed to simulate the failure of embankment dams and levees by concentrated leak erosion. In this model, the turbulent pipe flow with erosion mechanism was employed as well as the soil erosion law. Considering the breach enlargement process, a simple headcut migration model based on the soil tensile strength was presented to simulate the critical length of the headcut. Good agreements were obtained by comparing with the limit equilibrium numerical model. A simple model was eventually proposed to simulate the lateral shear stress on the breach sides, accounting for the secondary flow. The lateral shear stress can be greater than the bottom shear stress, depending on the situation. . Finally, a large-scale test of dam failure was simulated by using the pipe enlargement and some components of the breach widening models proposed. The simulation of the pipe enlargement process had good agreement with the measured data. Both of the pipe diameter and the discharge flow were well simulated. The stepwise enlargement of the breach width was also well simulated at the beginning of the breach widening process. Validation and application prospects of the proposed models are discussed.
35

Aerodynamic Investigations of a High Pressure Turbine Vane with Leading Edge Contouring at Endwall in a Transonic Annular Sector Cascade

Saha, Ranjan January 2012 (has links)
Efficiency improvement is an important aspect to reduce the use of fossil-based fuel in order to achieve a sustainable future. Gas turbines are mainly fossil-fuel based turbomachines, and, therefore, efficiency improvement is still the subject of many on-going research activities in the gas turbine community. This study is incorporated into a research project that investigates design possibilities of efficiency improvement at the high pressure turbine (HPT) stage. In the search for HPT-stage efficiency gains, leading edge (LE) contouring near the endwall is one of the methods found in the published literature that has shown a potential to increase the efficiency by decreasing the amount of secondary losses. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage. Particularly, the influence of the LE fillet on losses and flow structure is investigated concentrating on the secondary flow. The core investigation is of an experimental nature. Detailed investigations of the flow field in an annular sector cascade (ASC) are presented with and without the LE fillet, using a geometric replica of a modern gas turbine nozzle guide vane (NGV) with a contoured tip endwall. Furthermore, a separate investigation is performed on a hub-cooled NGV, which focuses on endwalls, specifically the interaction between the hub film cooling and the mainstream (MS). The experimental investigations indicate that the LE fillet has no significant effect on the flow and energy losses of the investigated NGV. The reason why the LE fillet does not affect the losses might be due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. Oil flow visualisation for the baseline case displays a clear saddle point, with a separation line where the horseshoe (HS) vortex separates into the suction side (SS) and the pressure side (PS), whereas for the filleted case, the saddle point is not noticeable. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the SS surfaces and does not reach the PS of the hub surface, leaving it less protected from the hot gas. / För att åstadkomma en uthållig kraftproduktion i framtiden och en minskning i användandet av fossila bränslen är effektivitetsförbättringar av central betydelse. Gasturbiner är i grund och botten fossilbaserade turbomaskiner och därför bedrivs forsknings- och utvecklingsarbete kring verkningsgradsförbättringar. Den här studien ingår i ett forskningsprojekt som undersöker designmodifieringar med målet att höja verkningsgraden för ett högtrycksturbinsteg. Förändringar av bladets eller ledskenans framkantsgeometri nära ändväggarna har i den öppna litteraturen funnits vara en lovande metod för att minska ändväggsförlusterna. Det övergripande målet med denna studie är att bidra till utvecklingen av effektiva högtrycksturbinsteg för gasturbiner. Kärnan i undersökningen är experimentell. Särskilt påverkan från förändring av framkanten på förluster och flödesstruktur undersöks, med fokus på det sekundära flödet. Detaljerade strömningsundersökningar i ett bågformat statorgitter bestående av en geometrisk replika av en stator från en modern gasturbin presenteras, med och utan geometrisk förändring av framkanten. Vidare så genomförs en separat undersökning av en filmkyld ledskena utan framkantsförändring med fokus på interaktionen mellan filmkylningen vid inre ändväggen och huvudflödet. De experimentella undersökningarna visar att den undersökta geometriska förändringen av framkanten inte är av signifikant betydelse för strömningsförlusterna med den studerade ledskenan. Anledningen till att designförändringen inte påverkar förlusterna kan bero på användandet av en tredimensionell ledskena med en existerande typisk kärlradie mellan ledskenan och ändväggarna. Observationerna visar också att den komplexa ändväggsströmningen är starkt beroende av det inkommande gränsskiktets egenskaper. Oljevisualisering för referensledskenan visar en tydlig stagnationspunkt på ändväggen där gränsskiktet delas upp likt en hästskoformation i virvlar på sug- respektive trycksidan av ledskenan. För den modifierade framkanten har ingen tydlig stagnationspunkt på ändväggen observerats. Spårgasundersökningar med den filmkylda ledskenan visar att filmkylningen på den inre plattformen är koncentrerad längs sugsidan och når inte trycksidan på plattformen som därmed är mindre skyddad mot den varma gasströmningen. / QC 20120330
36

Design and Implementation of Periodic Unsteadiness Generator for Turbine Secondary Flow Studies

Fletcher, Nathan James 18 June 2019 (has links)
No description available.
37

Three-dimensional Effects on Unsteady Dynamics and Turbulent Transport Mechanisms of an Impinging Shock Wave/Boundary-layer Interaction

Vyas, Manan A. January 2021 (has links)
No description available.
38

Rheo-NMR studies of viscoelastic secondary flows in ducts of non-circular cross-section

Schroeder, Christian Berthold Karl 07 May 2012 (has links)
The existence of hydrodynamically developed, laminar Viscoelastic Secondary Flows (VSFs) of non-Newtonian fluids in straight ducts of non-circular cross-section was proposed in the 1950's. VSFs have since been observed sporadically, and only once with a velocimetric technique. Using axial and transverse full flow-field velocity-position raster maps made with Rheological Nuclear Magnetic Resonance (Rheo-NMR), Newtonian and non-Newtonian fluid flows were quantified in Hagen-Poiseuille and Power Law contexts, over more than two orders of magnitude of flow rate, in ducts of circle, square, triangle, and pentagon cross-section. VSF was reliably and repeatedly observed to occur at between one part in 130 and one part in 600 of the primary axial flow velocity. Velocity measurements ranged from <10 µm/s to approximately 30 cm/s, suggesting a velocity dynamic range >3E4 without optimization. To obtain VSF flow direction information, a novel flow directional phantom was developed and characterized. Aqueous solutions of Polyethylene Oxide (PEO), Viscarin GP-109NF, Viscarin GP-209NF (V209), Hyaluronan (HA) in a Phosphate-Buffered Saline-like solvent, and an aqueous Polyethylene Glycol/PEO-based Boger fluid were investigated. Axial data was corroborated with related data gathered by an independent method. Basic simulations corroborated the VSF observations. Duct hydraulic diameters (>= 1.6 mm) approached the micro-channel regime. VSF detections in HA --- synovial fluid's principal component --- and V209 were novel, as were observations of some artifacts which were subsequently characterized and corrected. The detection of VSF in HA represents the first experimental evidence suggesting that its second normal stress (N_2) is comparable to that of better-characterized fluids. In the first application of a new VSF-based method, a particular Boger fluid's constant viscosity and, in the square duct, its lack of VSF were used with established criteria to suggest that the fluid's N_2 approached zero. The development of a rudimentary, but versatile and inexpensive home-built velocimetric spectrometer is detailed, as are several new components. An exhaustive VSF literature review is included. The remarkable transverse velocimetric ability of Rheo-NMR in both optically opaque and transparent system is highlighted, suggesting that perhaps the technique might represent, in both micro-channels and conventional ducts, the gold-standard in flow velocimetry.
39

Fluid dynamic assessments of spiral flow induced by vascular grafts

Kokkalis, Efstratios January 2014 (has links)
Peripheral vascular grafts are used for the treatment of peripheral arterial disease and arteriovenous grafts for vascular access in end stage renal disease. The development of neo-intimal hyperplasia and thrombosis in the distal anastomosis remains the main reason for occlusion in that region. The local haemodynamics produced by a graft in the host vessel is believed to significantly affect endothelial function. Single spiral flow is a normal feature in medium and large sized vessels and it is induced by the anatomical structure and physiological function of the cardiovascular system. Grafts designed to generate a single spiral flow in the distal anastomosis have been introduced in clinical practice and are known as spiral grafts. In this work, spiral peripheral vascular and arteriovenous grafts were compared with conventional grafts using ultrasound and computational methods to identify their haemodynamic differences. Vascular-graft flow phantoms were developed to house the grafts in different surgical configurations. Mimicking components, with appropriate acoustic properties, were chosen to minimise ultrasound beam refraction and distortion. A dual-beam two-dimensional vector Doppler technique was developed to visualise and quantify vortical structures downstream of each graft outflow in the cross-flow direction. Vorticity mapping and measurements of circulation were acquired based on the vector Doppler data. The flow within the vascular-graft models was simulated with computed tomography based image-guided modelling for further understanding of secondary flow motions and comparison with the experimental results. The computational assessments provided a three-dimensional velocity field in the lumen of the models allowing a range of fluid dynamic parameters to be predicted. Single- or double-spiral flow patterns consisting of a dominant and a smaller vortex were detected in the outflow of the spiral grafts. A double- triple- or tetra-spiral flow pattern was found in the outflow of the conventional graft, depending on model configuration and Reynolds number. These multiple-spiral patterns were associated with increased flow stagnation, separation and instability, which are known to be detrimental for endothelial behaviour. Increased in-plane mixing and wall shear stress, which are considered atheroprotective in normal vessels, were found in the outflow of the spiral devices. The results from the experimental approach were in agreement with those from the computational approach. This study applied ultrasound and computational methods to vascular-graft phantoms in order to characterise the flow field induced by spiral and conventional peripheral vascular and arteriovenous grafts. The results suggest that spiral grafts are associated with advanced local haemodynamics that may protect endothelial function and thereby may prevent their outflow anastomosis from neo-intimal hyperplasia and thrombosis. Consequently this work supports the hypothesis that spiral grafts may decrease outflow stenosis and hence improve patency rates in patients.

Page generated in 0.1112 seconds