• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Aerodynamic Investigation of Leading Edge Contouring and External Cooling on a Transonic Turbine Vane

Saha, Ranjan January 2014 (has links)
Efficiency improvement in turbomachines is an important aspect in reducing the use of fossil-based fuel and thereby reducing carbon dioxide emissions in order to achieve a sustainable future. Gas turbines are mainly fossil-based turbomachines powering aviation and land-based power plants. In line with the present situation and the vision for the future, gas turbine engines will retain their central importance in coming decades. Though the world has made significant advancements in gas turbine technology development over past few decades, there are yet many design features remaining unexplored or worth further improvement. These features might have a great potential to increase efficiency. The high pressure turbine (HPT) stage is one of the most important elements of the engine where the increased efficiency has a significant influence on the overall efficiency as downstream losses are substantially affected by the prehistory. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage.   Hence, this study has been incorporated into a research project that investigates leading edge contouring near endwall by fillet and external cooling on a nozzle guide vane with a common goal to contribute to the development of the HPT stage. In the search for HPT stage efficiency gains, leading edge contouring near the endwall is one of the methods found in the published literature that showed a potential to increase the efficiency by decreasing the amount of secondary losses. However, more attention is necessary regarding the realistic use of the leading edge fillet. On the other hand, external cooling has a significant influence on the HPT stage efficiency and more attention is needed regarding the aerodynamic implication of the external cooling. Therefore, the aerodynamic influence of a leading edge fillet and external cooling, here film cooling at profile and endwall as well as TE cooling, on losses and flow field have been investigated in the present work. The keystone of this research project has been an experimental investigation of a modern nozzle guide vane using a transonic annular sector cascade. Detailed investigations of the annular sector cascade have been presented using a geometric replica of a three dimensional gas turbine nozzle guide vane. Results from this investigation have led to a number of new important findings and also confirmed some conclusions established in previous investigations to enhance the understanding of complex turbine flows and associated losses.   The experimental investigations of the leading edge contouring by fillet indicate a unique outcome which is that the leading edge fillet has no significant effect on the flow and secondary losses of the investigated nozzle guide vane. The reason why the leading edge fillet does not affect the losses is due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. The investigation of the external cooling indicates that a coolant discharge leads to an increase of profile losses compared to the uncooled case. Discharges on the profile suction side and through the trailing edge slot are most prone to the increase in profile losses. Results also reveal that individual film cooling rows have a weak mutual effect. A superposition principle of these influences is followed in the midspan region. An important finding is that the discharge through the trailing edge leads to an increase in the exit flow angle in line with an increase of losses and a mixture mass flow. Results also indicate that secondary losses can be reduced by the influence of the coolant discharge. In general, the exit flow angle increases considerably in the secondary flow zone compared to the midspan zone in all cases. Regarding the cooling influence, the distinct change in exit flow angle in the area of secondary flows is not noticeable at any cooling configuration compared to the uncooled case. This interesting zone requires an additional, accurate study. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the suction surfaces and does not reach the pressure side of the hub surface, leaving it less protected from the hot gas. This indicates a strong interaction of the secondary flow and cooling showing that the influence of the secondary flow cannot be easily influenced.   The overall outcome enhances the understanding of complex turbine flows, loss behaviour of cooled blade, secondary flow and interaction of cooling and secondary flow and provides recommendations to the turbine designers regarding the leading edge contouring and external cooling. Additionally, this study has provided to a number of new significant results and a vast amount of data, especially on profile and secondary losses and exit flow angles, which are believed to be helpful for the gas turbine community and for the validation of analytical and numerical calculations. / Ökad verkningsgrad i turbomaskiner är en viktig del i strävan att minska användningen av fossila bränslen och därmed minska växthuseffekten för att uppnå en hållbar framtid. Gasturbinen är huvudsakligen fossilbränslebaserad, och driver luftfart samt landbaserad kraftproduktion. Enligt rådande läge och framtidsutsikter bibehåller gasturbinen denna centrala roll under kommande decennier. Trots betydande framsteg inom gasturbinteknik under de senaste årtionden finns fortfarande många designaspekter kvar att utforska och vidareutveckla. Dessa designaspekter kan ha stor potential till ökad verkningsgrad. Högtrycksturbinsteget är en av de viktigaste delarna av gasturbinen, där verkningsgraden har betydande inverkan på den totala verkningsgraden eftersom förluster kraftigt påverkas av tidigare förlopp. Huvudsyftet med denna studie är att bidra till verkningsgradsförbättringar i högtrycksturbinsteget.   Studien är del i ett forskningsprojekt som undersöker ledskenans framkantskontur vid ändväggarna samt extern kylning, i jakten på dessa förbättringar. Den aerodynamiska inverkan av en förändrad geometri vid ledskenans ändväggar har i tidigare studier visat potential för ökad verkningsgrad genom minskade sekundärförluster. Ytterligare fokus krävs dock, med användning av en rimlig hålkälsradie. Samtidigt har extern kylning i form av filmkylning stor inverkan på verkningsgraden hos högtrycksturbinsteget och forskning behövs med fokus på den aerodynamiska inverkan. Av denna anledning studeras här inverkan både av ändrad hålkälsradie vid ledskenans framkant samt extern kylning i form av filmkylning av skovel, ändvägg och bakkant på aerodynamiska förluster och strömningsfält. Huvudpelaren i detta forskningsprojekt har varit en experimentell undersökning av en geometrisk replika av en modern tredimensionell gasturbinstator i en transonisk annulärkaskad. Detaljerade undersökningar i annulärkaskaden har gett betydande resultat, och bekräftat vissa tidigare studier. Detta har lett till ökad förståelsen för de komplexa flöden och förluster som karakteriserar gasturbiner.   De experimentella undersökningarna av förändrad framkantsgeometri leder till den unika slutsatsen att den modifierade hålkälsradien inte har någon betydande inverkan på strömningsfältet eller sekundärförluster av den undersökta ledskenan. Anledningen till att förändringen inte påverkar förlusterna är i detta fall den tredimensionella karaktären hos ledskenan med en redan existerande typisk framkantsgeometri. Undersökningarna visar också att de komplexa sekundärströmningarna är kraftigt beroende av det inkommande gränsskiktet. Undersökning av extern kylning visar att kylflödet leder till en ökad profilförlust. Kylflöde på sugsidan samt bakkanten har störst inverkan på profilförlusten. Resultaten visar också att individuella filmkylningsrader har liten påverkan sinsemellan och kan behandlas genom en superpositionsprincip längs mittsnittet. En viktig slutsats är att kylflöde vid bakkanten leder till ökad utloppsvinkel tillsammans med ökade förluster och massflöde. Resultat tuder på att sekundärströmning kan minskas genom ökad kylning. Generellt ökar utloppsvinkeln markant i den sekundära flödeszonen jämfört med mittsnittet för alla undersökta fall. Den kraftiga förändringen i utloppsvinkel är dock inte märkbar i den sekundära flödeszonen i något av kylfallen jämfört med de okylda referensfallet. Denna zon fordrar ytterligare studier. Spårgasundersökning av ledskenan med koldioxid (CO2) visar att plattformskylning uppströms ledskenan koncentreras till skovelns sugsida, och når inte trycksidan som därmed lämnas mer utsatt för het gas. Detta påvisar den kraftiga interaktionen mellan sekundärströmning och kylflöden, och att inverkan från sekundärströmningen ej enkelt kan påverkas. De generella resultaten från undersökningen ökar förståelsen av komplexa turbinflöden, förlustbeteenden för kylda ledskenor, interaktionen mellan sekundärströmning och kylflöden, och ger rekommendationer för turbinkonstruktörer kring förändrad framkantsgeometri i kombination med extern kylning. Dessutom har studien gett betydande resultat och en stor mängd data, särskilt rörande profil- och sekundärförluster och utloppsvinkel, vilket tros kunna vara till stor hjälp för gasturbinssamfundet vid validering av analytiska och numeriska beräkningar. / <p>QC 20140909</p> / Turbopower, Sector rig
22

Three-dimensional computational investigations of flow mechanisms in compound meandering channels

Shukla, Deepak R. January 2006 (has links)
Flow mechanisms of compound meandering channels are recognised to be far more complicated than compound straight channels. The compound meandering channels are mainly characterised by the continuous variation of mean and turbulent flow parameters along a meander wavelength; the existence of horizontal shear layer at the bankfull level and the presence of strong helical secondary flow circulations in the streamwise direction. The secondary flow circulations are very important as they govern the advection of flow momentum, distort isovels, and influence bed shear stress, thus producing a complicated and fully three-dimensional turbulent flow structures. A great deal of experiments has been conducted in the past, which explains flow mechanisms, mixing patterns and the behaviour of secondary flow circulations. However, a complete understanding of secondary flow structures still remains far from conclusive mainly because the secondary flow structures are influenced by the host of geometrical and flow parameters, which are yet to be investigated in detail. The three-dimensional Reynolds-averaged Navier-Stokes and continuity equations were solved using a standard Computational Fluid Dynamics solver to predict mean velocity, secondary flow and turbulent kinetic energy. Five different flow cases of various model scales and relative depths were considered. Detailed analyses of the measured and predicted flow variables were carried out to understand mean flow mechanisms and turbulent secondary flow structures in compound meandering channels. The streamwise vorticity equation was used to quantify the complex and three-dimensional behaviour of secondary flow circulations in terms of their generation, development and decay along the half-meander wavelength. The turbulent kinetic energy equation was used to understand energy expense mechanisms of secondary flow circulations. The strengths of secondary flow circulations were calculated and compared for different flow cases considered. The main findings from this research are as follows. The shearing of the main channel flow as the floodplain flow plunges into and over the main channel influences the mean and turbulent flow structures particularly in the crossover region. The horizontal shear layer at the inner bankfull level generates secondary flow circulations. As the depth of flow increases, the point of generation of secondary flow circulations moves downstream. The secondary shear stress significantly contributes towards the generation of streamwise vorticity and the production of turbulent kinetic energy. The rate of turbulence kinetic energy production was found to be higher than the rate of its dissipation in the crossover region, which demonstrates that the turbulence extracts more energy from the mean flu\\' than what is actually dissipated. This also implies that, in the crossover region, the turbulence is always advected downstream by the mean and secondary flows, The strength of geometry induced secondary flow circulation increases with the increase in the relative depth.
23

A study of sediment transport in two-stage meandering channel

Chan, Tuck Leong January 2003 (has links)
An investigation of the flow characteristics and sediment transport processes has been carried out in a two-stage meandering channel. Three phases of experiments have been conducted with various floodplain roughnesses. The dimensions of the flume are 13m long and 2.4m wide with a fixed valley slope of 11500. The meandering main channel has a sinuosity of 1.384 with top width of 0.4m. In each phase of the experiment, hydraulic data pertaining to stage-discharge, bed topography and sediment transport rate were measured at various overbank flow depths. Several flow depths were chosen to measure the three-dimensional velocities by means of Laser Doppler Anemometer and the morphological bedforms were recorded using the Photogrammetric technique. The boundary shear stresses were also measured by means of a Preston Tube and Vane Indicator. The experimental results showed that the presence of the energy losses due to momentum exchange and turbulence, bedforms roughness and floodplain roughness induced additional flow resistance to the main channel flow, particularly for shallow overbank flows. The combination of these losses affected a significant reduction in velocity and boundary shear stress in the main channel which, subsequently led to the reduction of sediment discharge at low relative depth for most tested cases. The reduction was more pronounced when the floodplain roughness increased. The examination of the three-dimensional velocity indicated that the formation of bedforms in the main channel is significantly affected by the flow structures, especially the secondary flow. A new method for predicting velocity and sediment transport rate has been introduced based on the two-dimensional equation (Spooner's) coupled with the self-calibrated empirical transport formula. The proposed method gave accurate prediction for depthaveraged velocity and sediment transport rate for two-stage meandering channel.
24

[pt] ESCOAMENTO SECUNDÁRIO EM UM ANULAR PARCIALMENTE OBSTRUÍDO COM ROTAÇÃO DO CILINDRO INTERNO / [en] SECONDARY FLOW IN PARTIALLY-OBSTRUCTED ANNULAR SPACE WITH INNER CYLINDER ROTATION

25 April 2005 (has links)
[pt] O escoamento em um espaço anular parcialmente obstruído é estudado para uma geometria entre cilindros concêntricos. A obstrução parcial é uma primeira aproximação de um escoamento em um espaço anular com um leito de cascalhos sedimentado que ocorre no processo de perfuração de poços para produção de óleo e gás, particularmente no caso de poços inclinados e horizontais. A presença de uma placa de obstrução parcial promove a assimetria no escoamento de tal modo que interfere na formação do regime de vórtices de Taylor. O campo de velocidade para esses escoamentos foi obtido via solução numérica e experimental. Nas simulações numéricas, as equações de conservação de massa e quantidade de movimento linear foram resolvidas para um escoamento de fluido newtoniano e não newtoniano pela técnica de volumes finitos. Os resultados experimentais foram obtidos a partir de campos instantâneos e médios de velocidade em planos meridionais do espaço anular usando a técnica de velocimetria por imagens de partículas (PIV). As medições focalizaram a obtenção do número de Reynolds rotacional crítico e a obtenção do perfil de velocidade axial passando pelo olho do vórtice. Os resultados mostram que o número de Reynolds crítico é diretamente afetado pelo grau de obstrução do espaço anular, assim como a largura dos vórtices de Taylor. O resultado dos perfis de velocidade axial calculados concorda bem com os resultados obtidos experimentalmente. A transição para o regime de vórtices de Taylor também é bem prevista pelo método numérico. Os resultados numéricos para a largura dos vórtices de Taylor não apresentam boa concordância, dependendo das condições de contorno estipuladas. A presença da placa de obstrução parcial promove uma recirculação circunferencial no escoamento que interage com o escoamento de vórtices de Taylor formando um escoamento complexo a partir de níveis de obstrução moderados. / [en] The flow inside a horizontal annulus due to the inner cylinder rotation is studied. The bottom of the annular space is partially blocked by a plate parallel to the axis of rotation, thereby destroying the circumferential symmetry of the annular space geometry. This flow configuration is found in the drilling process of horizontal petroleum wells, where a bed of cuttings is deposited at the bottom part of the annulus. The velocity field for this flow was obtained both numerically and experimentally. In the numerical work, the equations which govern the threedimensional, laminar flow of Newtonian and non-Newtonian liquids were solved via a finite-volume technique. In the experimental research, the instantaneous and time-averaged flow fields over two-dimensional meridional sections of the annular space were measured employing the particle image velocimetry (PIV) technique, both for Newtonian and power-law liquids. Attention was focused on the determination of the onset of secondary flow in the form of distorted Taylor vortices. The results showed that the critical rotational Reynolds number is directly influenced by the degree of obstruction of the flow. The influence of the obstruction is more perceptible in Newtonian than non- Newtonian liquids. The larger is the obstruction, the larger is the critical Taylor number. The height of the obstruction also controls the width of the vortices. The calculated steady state axial velocity profiles agreed well with the corresponding measurements. Transition values of the rotational Reynolds number are also well predicted by the computations. However, the measured and predicted values for the vortex size do not agree as well. Transverse flow maps revealed a complex interaction between the Taylor vortices and the zones of recirculating flow, for moderate to high degrees of flow obstruction.
25

Experimental loss measurements in an annular sector cascade at supersonic exit velocities

Lilienberg, László January 2016 (has links)
Efficiency improvement is one of the most important aspects of engineering and especially important in the field of energy production. In the past decades, energy was mostly produced by fossil based technologies involving turbomachines, and the efficiency of these machines nearly quadrupled since the introduction of the first economically viable gas turbines. The progress continues, as there are still areas where improvement can be made. Such area is the High Pressure Turbine stage (HPT), which influences the flow characteristics and losses downstream, which this thesis will examine in more detail. In the open literature it can be found that one of the areas with potential for progress is the external cooling of the nozzle guide vanes (NGV) of the HPT stage. However not many studies go towards supersonic exit velocities even though that is the most common trend followed by the industry these days. The external cooling allows the turbine entry temperature (TET) to go beyond the melting point of the blade material thus increase Carnot efficiency but in the meantime influences the flow characteristics and losses. To understand these influences of the cooling, experiments in an annular sector cascade (ASC) were conducted with exit velocities from Mach 0.95 to 1.2 without and with cooling applied. The findings of the experiments are believed to help the more detailed understanding of the flow behaviour at high exit velocities. When comparing the corresponding runs in the two cases it became obvious that with cooling applied the deviation of the exit flow angle is generally smaller than in the uncooled case. This might be a highly important design feature for designers to work with. From the available data it was concluded that the total pressure distribution across the span is not significantly affected with the introduction of cooling.
26

Aerodynamic Loss Co-Relations and Flow- Field Investigations of a Transonic Film- Cooled Nozzle Guide Vane

Leung, Pak Wing January 2015 (has links)
Over the last two decades, most developed countries have reached a consensus that greener energy production is necessary for the world, due to the climate changes and limited fossil fuel resources. More efficient turbine is desirable and can be archived by higher turbine-inlet temperature (TIT). However, it is difficult for nozzle guide vane (NGV), which is the first stage after combustion chamber, to withstand a very high temperature. Thus, cooling methods such as film cooling have to be implemented. Film-cooled NGV of an annular sector cascade (ASC) is studied in this thesis, for getting comprehensive calculation of vorticity, and analyzing applicability of existing loss models, namely Hartsel model and Young &amp; Wilcock model. The flow-field calculation methods from previously published studies are reviewed. Literatures focusing on Hartsel model and Young &amp; Wilcock model are studied. Measurement data from previously published studies are analyzed and compared with the loss models. In order to get experience of how measurements take place, participation of a test run experiment is involved. Calculation of flow vector has been evaluated and modified. Actual flow angle is introduced when calculating velocity components. Thus, more exact results are obtained from the new method. Calculation of vorticity has been evaluated and made more comprehensive. Vorticity components as well as magnitude of total streamwise vorticity are calculated and visualized. Vorticity is higher and more extensive for fully cooled case than uncooled case. Highest vorticity is found at regions near the hub, tip and TE. Axial and circumferential vorticities show similar patterns, while the radial vorticity is relatively simpler. Compressibility is introduced as a new method when calculating circumferential and radial vorticities, resulting more extensive and higher vorticities than results from incompressible solutions. Hartsel model and Young &amp; Wilcock model have been evaluated and compared to the ASC to see the applicability of the models. In general, Hartsel model cannot agree with the ASC to a satisfactory level and thus cannot be applied. Coolant velocity is found to be the dominant factor of Hartsel model. Young &amp; Wilcock model may match SS1 and SS2 cases, or even PS and SH4 cases, but cannot match TE case. The applicability of Young &amp; Wilcock model is much dependent on the location of cooling rows.
27

Analytical modelling of sidewall turbulence effect on streamwise velocity profile using 2D approach: A comparison of rectangular and trapezoidal open channel flows

Pu, Jaan H., Pandey, M., Hanmaiahgari, P.R. 28 July 2020 (has links)
Yes / Natural earth-bounded channel flows usually subject to various sidewall turbulences, i.e. in the form of secondary currents, due to non-constant channel shapes at different sections. This paper investigates an improved Shiono-Knight model (SKM) by combining it with a Multi-Zonal (MZ) method (proposed by Pu, 2019) to represent lateral flow turbulence and secondary currents in different shapes of open channel, i.e. rectangular and trapezoidal. By applying the proposed analytical model to both rectangular and trapezoidal channel flows, we have inspected different streamwise velocity characteristics across transverse direction generated by their sidewalls in order to provide crucial fundamental understanding to real-world natural flow system. The proposed model has also been validated via various experimental data conducted in national UK Flood Channel Facility (UK-FCF). It has been observed that the trapezoidal channel has created a larger sidewall zone where secondary current can affect flow velocity; however, the intensity of the secondary flow in trapezoidal channel has been found lesser than that of the rectangular channel. By improving the modelling of natural flow at sidewall, the studied approach could be adapted into different existing analytical models to improve their accuracy.
28

三次元一般曲線座標系に対するCIP法粘性流解法

高下, 和浩, KOHGE, Kazuhiro, 峯村, 吉泰, MINEMURA, Kiyoshi, 内山, 知実, UCHIYAMA, Tomomi 03 1900 (has links)
No description available.
29

Modélisation d'un collecteur électrostatique compact en régime laminaire pour la capture de bio-particules submicroniques aéroportées / Modeling of compact electrostatic collector under laminar to capture airborne bio-submicron particles

Lancereau, Quentin 12 December 2012 (has links)
La détection d'agents biologiques dans l'air ambiant est devenue un enjeu majeur notamment en environnement hospitalier et dans la protection contre le bioterrorisme. Dans ce contexte, la miniaturisation des dispositifs d'analyse permet d'envisager leur utilisation directement sur la zone d'étude. Afin d'obtenir un échantillon concentré et représentatif, la filtration de l'air reste cependant un point délicat. Parmi les différents principes exploitables pour la collecte de particules aéroportées, l'emploi des forces électriques semble être prometteur pour améliorer les performances des dispositifs qui se trouvent généralement fondés sur des forces inertielles. Dans cette étude, une modélisation fine des collecteurs électrostatiques a été conduite pour une géométrie fil / cylindre. Elle décrit tout d'abord les champs hydrodynamiques d'un écoulement charriant des inclusions dans lequel est imposée une décharge couronne. Une injection éventuelle de vapeur dans la chambre de collecte a nécessité ensuite la détermination des champs de température et concentration de la vapeur. Une analyse dimensionnelle inspectionnelle a montré que ces champs possèdent deux termes de couplage fort dont on a justifié l'omission dans cette étude ; les phénomènes physiques mis en jeu ont alors pu être classés selon une cascade d'influences non réciproques et la résolution numérique du modèle s'en est trouvée facilitée. Quatre configurations d'écoulement différentes, caractérisées par des recirculations d'origine électro hydrodynamiques, ont été identifiées et leurs impacts sur les rendements de collecte quantifiés. De plus, une procédure de dimensionnement des filtres électrostatiques fondée sur un nombre de Deutsch représentatif des rendements a été mise en place. Son exploitation a montré l'intérêt de la mise en parallèle de petits collecteurs pour filtrer des débits d'air importants. Cette étude s'est achevée par l'analyse des effets engendrés par l'injection de vapeur dans la chambre de collecte. Elle a jeté les bases d'une explication pour l'augmentation des rendements de collecte résultant de cette injection. / Detection of airborne biological agents has become a major challenge especially in hospitals and the protection against bioterrorism. In this context, the miniaturization of analytical devices allows to consider their direct use in the field. To obtain a representative and concentrated sample, air filtration remains a delicate point. Among the various principles used to collect airborne particles, the use of electrical forces seems to be promising to improve performance beyond these of devices that are based on inertial forces.In this study, a detailed model of electrostatic collectors was developed in the wire/cylinder geometry. It first describes the hydrodynamic flow fields carring inclusions in which a corona discharge is imposed. Afterwards, the possible injection of steam into the collection chamber required the determination of the temperature and vapor concentration fields. An inspectionnal dimensional analysis justified the omission of two strong coupling terms. Therefore, in this study, the involved physical phenomena could be classified according to a non-reciprocal influences cascade and the numerical model is become simpler. Four different flow patterns, characterized by their electrohydrodynamic secondary flows, were identified and their impact on the collection efficiencies was quantified. In addition a design procedure of electrostatic filters, based on a representative efficiency Deutsch number, has been developed. This procedure shows the interest of parallelizing small collectors to filter important airflows. This study was completed by the analysis of the effects of steam into the collection chamber. It provides the basis for an explanation of the collection efficiencies increase related to this injection.
30

A study of overbank flows in non-vegetated and vegetated floodplains in compound meandering channels

Ismail, Zulhilmi January 2007 (has links)
Laboratory experiments concerning stage-discharge, flow resistance, bedforms, sediment transport and flow structures have been carried out in a meandering channel with simulated non-vegetated and vegetated floodplains for overbank flow. The effect of placing solid blocks in different arrangements as a model of rigid, unsubmerged floodplain vegetation on a floodplain adjacent to a meandering channel is considered. The aim was to investigate how density and arrangements of floodplain vegetation influence stage-discharge, flow resistance, sediment transport and flow behaviours. Stage-discharge curves, Manning's n and drag force FD are determined over 165 test runs. The results from the laboratory model tests show that the placing of solid blocks along some part of the bend sections has a significant effect on stage-discharge characteristics. The change in stage-discharge by the blocks is compared using different arrangements, including the non-vegetated floodplains case. The experimental results show that the presence of energy losses due to momentum exchange between the main channel and the floodplain as well as the different densities of the blocks on a floodplain induce additional flow resistance to the main channel flow, particularly for shallow overbank flows. In general, the results show that the density and arrangement of blocks on the floodplains are very important for stage-discharge determination and, in some cases, for sediment transport rates, especially for a mobile main channel. Also, the correction parameter, a is introduced in order to understand the effects of blocks and bedforms on the force balance equation. By applied the correction factor c; a stagedischarge rating curve can be estimated when the avalue is calibrated well. Telemac 2D and 3D were applied to predict mean velocity, secondary flow and turbulent kinetic energy. Telemac computations for non-vegetated and vegetated floodplain cases in a meandering channel generally give reasonably good predictions when compared with the measured data for both velocity and boundary shear stress in the main channel. Detailed analyses of the. predicted flow variables were therefore carried out in order to understand mean flow mechanisms and secondary flow structures in compound meandering channels. The non-vegetated and two different cases of vegetated floodplain for different relative depths were considered. For the arrangement on a non-vegetated floodplain shows how the shearing of the main channel flow as the floodplain flow plunges into and over the main channel influences the mean and turbulent flow structures, particularly in the cross-over region. While applying vegetated floodplain along a cross-over section confirmed that the minimum/reduction shearing of the main channel flow by the floodplain flow plunging into and over the main channel is observed from the cross-sectional distributions of the streamwise velocity (U), lateral velocity (V), and secondary flow vectors. In addition to that, the vegetated floödplain along the apex bend region shows a small velocity gradient within the bend apex region. However, strong secondary flow in the cross-over section suggested that the flow interaction was quite similar to the non vegetation case in the cross-over section region.

Page generated in 0.1389 seconds