• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 210
  • 31
  • 30
  • 28
  • 22
  • 20
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 482
  • 142
  • 117
  • 65
  • 59
  • 56
  • 51
  • 51
  • 50
  • 49
  • 42
  • 40
  • 39
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Algorithms For Efficient Implementation Of Secure Group Communication Systems

Rahul, S 11 1900 (has links)
A distributed application may be considered as a set of nodes which are spread across the network, and need to communicate with each other. The design and implementation of these distributed applications is greatly simplified using Group Communication Systems (GCSs) which provide multipoint to multipoint communication. Hence, GCSs can be used as building blocks for implementing distributed applications. The GCS is responsible for reliable delivery of group messages and management of group membership. The peer-to-peer model and the client-server model are the two models of distributed systems for implementing GCSs. In this thesis, our focus is on improving the capability of GCS based on the client-server model. Security is an important requirement of many distributed applications. For such applications, security has to be provided m the GCS itself. The security of a GCS includes confidentiality, authentication and non-repudiation of messages, and ensuring that the GCS is properly meeting its guarantees. The complexity and cost of implementation of the above three types of security guarantees greatly depend on whether the GCS servers are trusted by the group members or not. Making use of the GCS services provided by untrusted GCS servers becomes necessary when the GCS servers are managed by a third party. In this thesis, we have proposed algorithms for ensuring the above three security guarantees for GCSs in which servers are not trusted. As part of the solution, we have proposed a new digital multisignature scheme which allows group members to verify that a message has indeed been signed by all group members. The various group key management algorithms proposed in literature differ from each other with respect to the following four metrics: communication overhead, computational overhead, storage at each member and distribution of load among group members. We identify the need for a distributed group key management algorithm which minimizes the computational overhead on group members and propose an algorithm to achieve it.
422

Secure degrees of freedom on widely linear instantaneous relay-assisted interference channel

Ho, Zuleita K.-M., Jorswieck, Eduard 22 November 2013 (has links) (PDF)
The number of secure data streams a relay-assisted interference channel can support has been an intriguing problem. The problem is not solved even for a fundamental scenario with a single antenna at each transmitter, receiver and relay. In this paper, we study the achievable secure degrees of freedom of instantaneous relay-assisted interference channels with real and complex coefficients. The study of secure degrees of freedom with complex coefficients is not a trivial multiuser extension of the scenarios with real channel coefficients as in the case for the degrees of freedom, due to secrecy constraints. We tackle this challenge by jointly designing the improper transmit signals and widely-linear relay processing strategies.
423

Use of space by caribou in northern Canada

Nagy, John Andrew Stephen Unknown Date
No description available.
424

Wireless secret key generation versus capable adversaries

Ghoreishi Madiseh, Masoud 22 December 2011 (has links)
This dissertation applies theories and concepts of wireless communications and signal processing to the security domain to assess the security of a Wireless secret Key Generation (WKG) system against capable eavesdroppers, who employ all the feasible tools to compromise the system’s security. The security of WKG is evaluated via real wireless measurements, where adversary knows and applies appropriate signal processing tools in ordere to predict the generated key with the communicating pair. It is shown that in a broadband stationary wireless communication channel, (e.g. commercial off-the-shelf 802.11 WLAN devices), a capable eavesdropper can recover a large portion of the secret key bits. However, in an Ultra-wideband (UWB) communication, at the same stationary environment, secret key rates of 128 bits per channel probe are achievable. / Graduate
425

Fault Tolerant Cryptographic Primitives for Space Applications

Juliato, Marcio January 2011 (has links)
Spacecrafts are extensively used by public and private sectors to support a variety of services. Considering the cost and the strategic importance of these spacecrafts, there has been an increasing demand to utilize strong cryptographic primitives to assure their security. Moreover, it is of utmost importance to consider fault tolerance in their designs due to the harsh environment found in space, while keeping low area and power consumption. The problem of recovering spacecrafts from failures or attacks, and bringing them back to an operational and safe state is crucial for reliability. Despite the recent interest in incorporating on-board security, there is limited research in this area. This research proposes a trusted hardware module approach for recovering the spacecrafts subsystems and their cryptographic capabilities after an attack or a major failure has happened. The proposed fault tolerant trusted modules are capable of performing platform restoration as well as recovering the cryptographic capabilities of the spacecraft. This research also proposes efficient fault tolerant architectures for the secure hash (SHA-2) and message authentication code (HMAC) algorithms. The proposed architectures are the first in the literature to detect and correct errors by using Hamming codes to protect the main registers. Furthermore, a quantitative analysis of the probability of failure of the proposed fault tolerance mechanisms is introduced. Based upon an extensive set of experimental results along with probability of failure analysis, it was possible to show that the proposed fault tolerant scheme based on information redundancy leads to a better implementation and provides better SEU resistance than the traditional Triple Modular Redundancy (TMR). The fault tolerant cryptographic primitives introduced in this research are of crucial importance for the implementation of on-board security in spacecrafts.
426

Use of space by caribou in northern Canada

Nagy, John Andrew Stephen 11 1900 (has links)
Understanding how populations are structured and how they use natural and anthropogenic spaces is essential for effective wildlife management. A total of 510 barren-ground (Rangifer tarandus groenlandicus), 176 boreal (R. t. caribou), 11 mountain woodland (R. t. caribou), and 39 island (R. t. groenlandicus x pearyi) caribou were tracked with satellite collars in 1993-2009 in the Northwest Territories, Nunavut, and northern Alberta. Using satellite location data and hierarchical and fuzzy cluster analyses, I verified that Cape Bathurst, Bluenose-West, Bluenose-East, Bathurst, Beverly, Qamanirjuaq, and Lorillard barren-ground subpopulations were robust; the Queen Maude Gulf and Wager Bay barren-ground subpopulations were distinct. Dolphin and Union island caribou formed one population; boreal caribou formed two distinct subpopulations. Females in robust subpopulations were structured by strong annual spatial affiliation; those in distinct subpopulations were spatially independent and structured by migratory connectivity, movement barriers, and/or habitat discontinuity. An east-west cline in annual-range sizes and path lengths supported the subpopulation structure identified for migratory barren-ground caribou. I analyzed satellite location data to determine parturition dates and activity periods for all caribou ecotypes. For parturition dates I found a north-south cline for boreal caribou, west-east cline for migratory barren-ground caribou, and ecotype and subspecies clines for boreal and barren-ground caribou. Based on annual changes in movement rates I identified eight activity periods for boreal and tundra-wintering, 10 for mountain woodland, and 12 for migratory barren-ground caribou. Based distribution and movements, boreal caribou avoided seismic lines during periods when females and calves were most vulnerable to predators or hunters. They crossed fewer seismic lines and travelled faster when they crossed them than expected. Caribou avoided areas ≤400 m from seismic lines where they could space away from them suggesting that they perceive these as risky areas. I defined secure habitats as areas that were >400 m from anthropogenic linear features. Population growth rates were higher in areas where they had access to secure unburned habitat and where most of that was in patches >500 km2. Critical habitat for boreal caribou is a habitat state that provides “security” from predation risk and facilitates the effectiveness of their anti-predator strategies. / Ecology
427

雙方相等性驗證機制的設計及其應用 / A study on the design of Two-Party equality testing protocol and its applications

吳承峰, Wu, Cheng Feng Unknown Date (has links)
雙方相等性驗證即是在不洩漏任何自身私密資訊的情況下,進行秘密計算來了解彼此的資訊是否相等。然而在大多數的現有協議之中,多數為不公平的協定,也就是說其中的一方(被告知方)只能相信另一方(告知方)所告知的比較結果,而無從驗證。雖然邱等學者在2011 年提出的〝具隱私保護功能之兩方相等性驗證機制之提案〞已經提供了具雙方驗證的協定,但此方案因為在加密演算法上的限制導致實作較為困難。因此,在本論文中,將利用ElGamal 的加密機制,提出了一套新的雙方相等性驗證的協議,具備相同的雙方相等性驗證的功能,但對加密演算法的限制較少,實作及運算也較為有效率。另外,搭配模糊傳輸的協定,讓使用者藉由本研究所提出的協定跟伺服器端溝通,來獲得所欲取得的資料,並同時保障使用者以及伺服器端的隱私。同時除了理論的證明安全性及正確性之外,也撰寫程式模擬並證實協定的正確性及討論其效能。 / Two-party equality testing protocol allows two entities to compare their secrete information without leaking any information except the comparison result. In previous works, the comparison result can only be obtained by one entity (ie. informer) and then the entity informs the result to the other entity (ie. receiver). The receiver has to accept the received result since he has no way to verify its correctness. Ciou et al. in 2011 first mentioned this problem and proposed a new protocol to solve the aforementioned problem. However, their protocol has some specific restrictions which making it unpractical. In this paper, based on the ElGamal encryption, we propose a new two-party equality testing protocol. Our protocol has the same feature (ie. allows the two entries to test the correctness of the comparison result) as Ciou et al.’s protocol but is more efficient and practical than theirs. On the other hand, combining our protocol with an oblivious transfer protocol can let users communicate with servers and to get the data in a private way. It is useful on the issue of privacy protection. Finally, the security and correctness are discussed and proved. The efficiency of the protocol is also provided.
428

Secure Electronic Voting with Flexible Ballot Structure

Aditya, Riza January 2005 (has links)
Voting is a fundamental decision making instrument in any consensus-based society. It is employed in various applications from student body elections, reality television shows, shareholder meetings, to national elections. With the motivation of better eciency, scalability, speed, and lower cost, voting is currently shifting from paper-based to the use of electronic medium. This is while aiming to achieve better security, such that voting result reflects true opinions of the voters. Our research focuses on the study of cryptographic voting protocols accommodating a flexible ballot structure as a foundation for building a secure electronic voting system with acceptable voting results. In particular, we search for a solution suitable for the preferential voting system employed in the Australian Federal Election. The outcomes of the research include: improvements and applications of batch proof and verication theorems and techniques, a proposed alternative homomorphic encryption based voting scheme, a proposed Extended Binary Mixing Gate (EBMG) mix-network scheme, a new threshold randomisation technique to achieve receipt-freeness property in voting, and the application of cryptographic voting protocol for preferential voting. The threats and corresponding requirements for a secure secret-ballot voting scheme are rst discussed. There are significant security concerns about the conduct of electronic voting, and it is essential that the voting results re ect the true opinions of the voters - especially in political elections. We examine and extend batch processing proofs and verifications theorems and proposed applications of the theorems useful for voting. Many instances of similar operations can be processed in a single instance using a batch technique based on one of the batch theorems. As the proofs and verications provide formal assurances that the voting process is secure, batch processing offers great efficiency improvements while retaining the security required in a real-world implementation of the protocol. The two main approaches in cryptographic voting protocols, homomorphic encryption based voting and mix-network based voting, are both studied in this research. An alternative homomorphic voting scheme using multiplicative homomorphism property, and a number of novel mix-network schemes are proposed. It is shown that compared to the mix-network approach, homomorphic encryption schemes are not scalable for straight-forward adaptation of preferential systems. One important requirement of secret-ballot voting is receipt-freeness. A randomisation technique to achieve receipt-freeness in voting is examined and applied in an ecient and practical voting scheme employing an optimistic mix-network. A more general technique using threshold randomisation is also proposed. Combination of the primitives, both the homomorphic encryption and mixnetwork approach, yields a hybrid approach producing a secure and ecient secret-ballot voting scheme accommodating a exible ballot structure. The resulting solution oers a promising foundation for secure and practical secret-ballot electronic voting accommodating any type of counting system.
429

Digital encoding for secure data communications

Rondón, Eduardo Emilio Coquis. January 1976 (has links)
Thesis (Engineer's) --Naval Postgraduate School, 1976. / "September 1976." "AD A035848." Includes bibliographical references (leaves 122-123) Available via the Internet.
430

Optimisation numérique appliquée à la gestion de crise : Approche basée sur un algorithme hybride pour la résolution du problème intégré d'ordonnancement et d'allocation des ressources. / Numerical optimization applied to crisis management : A hybrid approach for solving the integrated problem of scheduling and resource allocation.

Khorbatly, Mohamad 24 October 2018 (has links)
Les travaux présentes dans cette thèse s'inscrivent dans le cadre des méthodes d'évacuation des populations. Ils visent à étudier les capacités et modéliser le problème d'évacuation (blessés, sinistrés, enfants, personnes agées, etc.) dans une situation de crise (attentats terroristes, catastrophes naturelles, etc.) et développer des méthodes d'aide à la décision tout en proposant une meilleure planification et des plans optimaux d'évacuation des populations de la zone de crise vers les centres hospitaliers.Notre travail consiste à résoudre le problème d'évacuation de blessés dans des zones de crise avec une nouvelle vision qui consiste à optimiser le temps de transport et par conséquent sauver le maximum des personnes touchées par cette crise d'une façon dynamique, efficace et rapide pour minimiser la perte humaine. / The work presented in this thesis is part of human evacuation methods. It aims to study the capacities, model the evacuation problem (wounded, victims, children, elderly, etc.) in a crisis situation (terrorist attacks, natural disasters, etc.) and to develops methods for decision making while proposing better planning and optimal evacuation plans for populations from the crisis zone to hospitals.Our job is to solve the wounded evacuation problem in crisis zone with a new vision that optimizes the transport time and thus saving the maximum of causalities in a dynamic, efficient and fast way in order to minimize human loss.

Page generated in 0.0397 seconds