• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paraleliza??o em GPU da segmenta??o vascular com extra??o de Centerlines por Height Ridges

Ribeiro, ?talo Mendes da Silva 02 March 2011 (has links)
Made available in DSpace on 2014-12-17T15:47:58Z (GMT). No. of bitstreams: 1 ItaloMSR_DISSERT.pdf: 4133389 bytes, checksum: 575496a3d8aa350df8e3e86992d9b27b (MD5) Previous issue date: 2011-03-02 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward / A segmenta??o vascular ? importante no diagn?stico de doen?as como o acidente vascular cerebral e ? dificultada por ru?dos na imagem e vasos muito finos que n?o s?o vistos. Uma maneira de realizar a segmenta??o ? extraindo a centerline do vaso com height ridges, que usa a intensidade como caracter?sticas para a segmenta??o. Este processo pode levar de segundos a minutos, dependendo da tecnologia atual empregada. O m?todo ? implementado em GPU, ou seja, ? executado de maneira paralela em placa gr?fica. O desempenho do m?todo de segmenta??o executado em GPU ? comparado com o mesmo m?todo em CPU e o m?todo original de Aylward em execu??o tamb?m na CPU. O melhoramento do novo m?todo sobre o original ? dupla. O ponto de partida para o processo de segmenta??o n?o ? um ?nico ponto no vaso sangu?neo, mas um volume, tornando assim mais f?cil para o usu?rio a sele??o de uma regi?o de interesse, e, o ganho do m?todo proposto foi 873 vezes mais r?pido sendo executado em GPU e 150 vezes mais r?pido sendo executado em CPU do que o original de Aylward em CPU

Page generated in 0.0861 seconds