• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1142
  • 197
  • 177
  • 127
  • 55
  • 32
  • 30
  • 14
  • 14
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • Tagged with
  • 2223
  • 337
  • 335
  • 286
  • 237
  • 218
  • 211
  • 199
  • 190
  • 186
  • 168
  • 160
  • 154
  • 151
  • 135
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Spectral decomposition of outcrop-based synthetic seismic data, applied to reservoir prediction in deep-water settings

Zhang, Hongjie January 2014 (has links)
No description available.
322

Detecting deep tectonic tremor in Taiwan using dense arrays

Sun, Wei-Fang 07 January 2016 (has links)
Deep tectonic tremor has been observed in major subduction zones, strike-slip faults, inland faulting systems, and arc-continent collision environments around the Pacific Rim. However, detailed space-time evolution of its source locations remains enigmatic because of difficulties in detecting and locating tremor accurately. In 2011, we installed two dense, small-aperture seismic arrays aiming to detect ambient tremor source beneath southern Central Range in Taiwan. We recorded continuous waveforms for a total of 134 days, including tremor triggered by the great 2011 Mw9.0 Tohoku earthquake. We use the broadband frequency-wavenumber beamforming and the moving-window grid-search methods to compute array parameters for detecting seismic signals. The obtained array parameters closely match both relocated local earthquakes and triggered tremor bursts located by an envelope cross-correlations method, indicating the robustness of our array technique. We identify tremor signals with coherent waveforms and deep incidence angles and detect tremor for 44 days among the 134-day study period. The total duration is 1,481-minute, which is 3-6 times more than that detected by the envelope cross-correlations method. In some cases, we observe rapid tremor migration with a speed at the order of 40-50 km/hour that is similar to the speed of fast tremor migration along-dip on narrow streaks in Japan and Cascadia. Our results suggest that dense array techniques are capable of capturing detailed spatiotemporal evolutions of tremor behaviors in southern Taiwan.
323

An assessment of current methodologies for mitigating the potential effects of anthropogenic underwater sound on marine life, and recommendations for best practice

Compton, Ross Craig January 2013 (has links)
Underwater sound from anthropogenic sources such as seismic surveys, marine renewable device installations and naval exercises has the potential to disturb and cause injury to a variety of marine species. There is particular concern for the potential effects upon marine mammals, which utilise sound to communicate, hunt and navigate. Observed effects include behavioural changes and reduced sighting rates, with unknown consequences for individuals or populations over time. Potential effects on marine mammals include sound induced damage to auditory systems, altered diving behaviour potentially resulting in decompression sickness, stranding and death. The aim of the thesis was to develop a framework of best practice measures relating to mitigating the potential effects of underwater sound on marine mammals during offshore exploration and development operations. In order to mitigate the potential effects of underwater sound, regulatory guidelines have been developed and implemented around the world, principally for seismic surveys. These guidelines limit the activation of seismic sources when in proximity to marine species, and involve the use of specially trained personnel on survey vessels known as Marine Mammal Observers (MMOs). A critical review of the guidelines identified variation in the level of precaution applied to measures, such as the distance at which species can be sighted before reducing sound output from the operation. MMOs collect sighting information for all encounters with marine species, resulting in large volumes of data detailing species occurrence and behaviour. A sample dataset was found to be subject to variation in quality due to the different academic backgrounds and training levels of personnel. The data highlighted significant differences in relation to sighting distance while the sound source is active or inactive, though lacked detail with regard to behaviours, likely due to the lack of ethological expertise among the observers. A questionnaire was conducted to determine any differences of opinion regarding current mitigation practice and the underlying issue between stakeholder groups. There was no difference of opinion between stakeholders regarding the importance of underwater sound compared to other environmental issues facing marine species such as fisheries by-catch and overfishing. Areas of consensus were evident, with most stakeholders finding current mitigation practice to be only ‘somewhat’ effective, and that sightings data collected by MMOs should be better utilised, with it being more useful for adding to our knowledge of marine mammal distributions than for determining the effects from operations. A framework for enhancing the collection, use and dissemination of MMO data is described with recommendations for the development of a Global Positioning System (GPS) enabled smartphone/ tablet based field data collection system, linked to an internet based geographical information system to enhance species distribution analysis. By coupling this with a simplified mitigation methodology, the outcome would enhance the risk management of operations in relation to where species are known to occur, with mitigation aimed at reducing exposure at critical times or in critical habitats. Simplifying mitigation and enhancing data collection and use will benefit stakeholders in managing essential operations responsibly.
324

The development of a seismic risk reduction procedure for the prioritization of low cost, load bearing masonry buildings

De la Harpe, Charles William Henry 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The Western Cape is one of the most seismically active regions in South Africa. It features geological properties which can develop earthquakes as large as 6.87 on the Richter scale. This poses a serious threat to all of the buildings that are currently located within this region. A recent study has found that typical three-storey Unreinforced Masonry (URM) buildings in the Cape Town area shows a high probability of failure or damage if subjected to such a large earthquake. Many of these buildings can be found in an area of Cape Town called the Cape Flats, housing approximately 11 000 individuals. The structural integrity of these buildings are of concern to engineers since it houses a number of individuals. The purpose of the study was to develop a risk assessment procedure that could be used to assess low-rise multi-storey (2, 3 and 4 storeys) URM buildings in order to determine where the risk of earthquake related damage would be the highest. The risk assessment procedure compared various characteristics regarding the buildings, residents, seismic attributes of the region and the recovery capability of the residents. The result, in the form of a risk rating, enabled the buildings to be prioritized according to their seismic risk. The aim was to develop a comparative model which could be applied to a range of buildings, indicating where the impact of an earthquake would be greatest. This result could then be used for further remedial action (such as retrofitting) where it is needed the most. The risk assessment procedure used an Earthquake Risk Assessment Model (ERAM) which was specifically developed to assess the earthquake risk of each building with the use of 26 factors. These factors would each be individually scored and through the ERAM model would produce a risk rating. The buildings' can then be ranked (prioritized) according to it's risk rating to determine where remedial actions or procedures are needed first. / AFRIKAANSE OPSOMMING: Die Wes-Kaap is een van die mees seismiese aktiewe streke in Suid-Afrika. Dit bevat geologiese eienskappe wat aardbewings met groottes van 6,87 op die Richterskaal kan laat ontwikkel (1 in 475 jaar herhaal periode). Dit hou 'n bedreiging vir baie die geboue wat tans in hierdie streek geleë is. 'n Onlangse studie het bevind dat tipiese drie-verdieping lasdraende steengeboue in die omgewing van Kaapstad 'n hoë waarskynlikheid van faling of skade toon as dit blootgestel word aan 'n groot aardbewing. Baie van hierdie geboue kan gevind word in 'n gebied van Kaapstad genaamd die Kaapse Vlakte, wat vir ongeveer 11 000 individue behuising bied. Die strukturele integriteit van hierdie geboue is van belang aangesien dit 'n groot aantal individue huisves. Die doel van die studie was om 'n risiko-evaluerings proses te ontwikkel wat gebruik kan word om multi-verdieping (2, 3 en 4 verdiepings) lasdraende steengeboue te evalueer ten opsigte van aardbewing verwante skade. Die risiko-evaluering proses vergelyk verskeie kenmerke van die geboue, die inwoners, seismiese eienskappe van die streek en die vermoë van die inwoners om terug te keer na hul alledaagse leefstyl. Die resultaat is in die vorm van 'n risiko-gradering, wat die gebruiker in staat stel om die geboue te prioritiseer volgens hul aardbewings risiko. Die doel was om 'n vergelykende model te ontwikkel wat toegepas kan word om 'n verskeidenheid van geboue te evalueer, en aan te dui waar die impak van 'n aardbewing die grootste sal wees. Hierdie resultaat kan dan gebruik word vir verdere remediërende optrede of prosedures soos versterkings. Die risiko-evaluerings proses gebruik 'n "Earthquake Risk Assessment Model" (ERAM) wat spesifiek ontwikkel is om die aardbewings-risiko van elke gebou te evalueer met die gebruik van 26 faktore. Hierdie faktore word elkeen individueel beoordeel en 'n risiko-gradering word verkry met behulp van die ERAM model. Die geboue kan dan geprioritiseer word volgens elkeen se risiko-gradering om te bepaal waar daar remediërende optrede nodig is.
325

Relationship between P-wave velocity & SPT N values and application toassessment of excavatability of terrain

Tsang, Kwok-mei., 曾幗媚. January 2004 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science
326

Depth-registration of 9-component 3-dimensional seismic data in Stephens County, Oklahoma

Al-Waily, Mustafa Badieh 04 September 2014 (has links)
Multicomponent seismic imaging techniques improve geological interpretation by providing crucial information about subsurface characteristics. These techniques deliver different images of the same subsurface using multiple waveforms. Compressional (P) and shear (S) waves respond to lithology and fluid variations differently, providing independent measurements of rock and fluid properties. Joint interpretation of multicomponent images requires P-wave and S-wave events to be aligned in depth. The process of identifying P and S events from the same reflector is called depth-registration. The purpose of this investigation is to illustrate procedures for depth-registering P and S seismic data when the most fundamental information needed for depth-registration – reliable velocity data – are not available. This work will focus on the depth-registration of a 9-component 3-dimensional seismic dataset targeting the Sycamore formation in Stephens County, Oklahoma. The survey area – 16 square miles – is located in Sho-Vel-Tum oilfield. Processed P-P, SV-SV, and SH-SH wave data are available for post-stack analysis. However, the SV-data volume will not be interpreted because of its inferior data-quality compared to the SH-data volume. Velocity data are essential in most depth-registration techniques: they can be used to convert the seismic data from the time domain to the depth domain. However, velocity data are not available within the boundaries of the 9C/3D seismic survey. The data are located in a complex area that is folded and faulted in the northwest part of the Ardmore basin, between the eastern Arbuckle Mountains and the western Wichita Mountains. Large hydrocarbon volumes are produced from stratigraphic traps, fault closures, anticlines, and combination traps. Sho-Vel-Tum was ranked 31st in terms of proved oil reserves among U.S. oil fields by a 2009 survey. I will interpret different depth-registered horizons on the P-wave and S-wave seismic data volumes. Then, I will present several methods to verify the accuracy of event-registration. Seven depth-registered horizons are mapped through the P-P and SH-SH seismic data. These horizons show the structural complexity that imposes serious challenges on well drilling within the Sho-Vel-Tum oil field. Interval Vp/Vs – a seismic attribute often used as lithological indicator – was mapped to constrain horizon picking and to characterize lateral stratigraphic variations. / text
327

Seismic performance of rectangular GFRP-reinforced concrete columns

Ali, Mahmoud 15 July 2015 (has links)
This study presents an assessment of the seismic performance of rectangular concrete columns internally reinforced with G (Glass) FRP. Eight full-scale columns prototypes, with a shear span of 1650-mm and 350-mm square cross-section, were constructed and tested under simulated seismic waves and constant axial loading. These columns simulate the lower portion of first storey columns between the footing and the contra-flexure point. Therefore, heavy steel-RC footing was post-tensioned to the laboratory strong floor in order to provide rational fixity to the column. The test parameters included reinforcement type, longitudinal reinforcement ratio, level of axial load, and stirrup spacing. Test results showed that deformability of GFRP-RC columns prototypes successfully replaced ductility in steel-RC columns in dissipating the seismic energy in the presence of constant axial load. Furthermore, the failure of sections was prominent by flexure concrete crushing at high drifts. Accordingly, GFRP-RC columns are a doable application in earthquake-resistant structures. / October 2015
328

The Development and Validation of a Non-tearing Floor Precast Concrete Structural System for Seismic Regions.

Leslie, Benjamin John January 2010 (has links)
Traditional seismic design philosophy for reinforced concrete seismic frame structures localises damage and inelastic deformation to regions of significant plasticity within the beam (plastic hinge zones) during a severe earthquake event. Collapse prevention of the frame is applied through capacity design methods, requiring the maximum expected flexural strength of the beam plastic hinges to be reliably assessed in order to design for, and ensure, the predominantly elastic flexural response of the columns in the frame. Previous experimental and numerical investigations have shown that significant and detrimental damage to the frame and floor system occurs due to the formation and elongation of ductile beam plastic hinges; requiring extensive post-earthquake repair or demolition with likely loss of function of the building. This poses significant economic consequences to occupiers of the building, as the time required to reinstate the integrity of the structural and non-structural building components is often lengthy. More importantly, it has been highlighted that the interaction between elongating ductile plastic hinges and the accompanying floor system enhances the flexural strength of the beam hinges, altering the distribution of forces in the seismic frame compared to that assumed during capacity design. Research has shown that the consideration of frame-floor interaction in current New Zealand design codes significantly underestimates the flexural strength enhancement of beam plastic hinges, threatening the hierarchy of strength and collapse prevention mechanisms employed in capacity design. Recent research has introduced change in the design philosophy of precast concrete seismic frames. Rather than designing for localised damage in the frame, unique Non-tearing (of the floor) connection details have been developed which provide a gap or slot between the end of the beam and column face and force connection rotation to occur about a shallow hinge located at the top of the beam, thereby avoiding the formation of plastic hinges and associated beam elongation effects altogether. Research investigations have shown that Non-tearing connections successfully minimise damage to the structural frame and floor, while providing seismic energy dissipation characteristics at least comparable to that of traditional reinforced concrete connections. In this research, the mechanics of different non-tearing connection arrangements were investigated and original theory introduced for the aspects of connection behaviour which diverged from fundamental reinforced concrete design. A variety of precast concrete non-tearing connection details were developed, with the design focus placed on economic and construction efficiency in order to encourage the rapid implementation of non-tearing connection technology into New Zealand construction industry. The performance of the developed connection details were explored and assessed experimentally and analytically. A two bay precast concrete frame with precast floor system was tested under a demanding reversed cyclic, quasi-static loading protocol using displacement control. The seismic response of the non-tearing connection details employed in the test frame successfully minimised damage to the frame and floor systems. Only minor repair of one primary crack at each connection between the floor diaphragm and supporting beam would be required after a design level earthquake. Issues encountered with buckling of the longitudinal reinforcement in the bottom of the beam reduced the connection performance at high levels of drift. However, detailing measures were successfully employed in successive tests which improved the drift capacity of the connections. Detailing improvements to enhance the seismic response of the developed non-tearing connections were recommended based observations from the frame test. Numerical analysis of the non-tearing connection details was performed using simple rotational and compound spring models, with the key features of the experimental response captured with excellent accuracy. The analytical models were constructed using engineering theory, rather than by calibration with experimental observations. The modelling assumptions and principles adopted in the analysis have been presented for use in design offices or future research programmes when designing and analysing seismic frames using non-tearing connections. This research successfully contributed to the development and progression of non-tearing frame technology. With further research and the refinement of construction details, non-tearing floor connections exhibit impressive potential for providing superior seismic safety, performance and efficiency in precast concrete seismic frame buildings.
329

Design Recommendations and Methods for Reinforced Concrete Floor Diaphragms Subjected to Seismic Forces

Gardiner, Debra Rachel January 2011 (has links)
The magnitudes of seismic forces which develop in floor diaphragms were investigated in this report to enable the development of a desktop floor diaphragm force design method for use in a structural design office. The general distributions of the forces which develop within the floor diaphragm were also investigated. Two and three dimensional, non-linear numerical integration time history analyses were performed to determine the trends and estimates of inertial and self-strain compatibility transfer forces within floor diaphragms. Sensitivity studies were carried out to determine which simplifying analytical modelling assumptions could be made in the analytical models. It was found that foundation flexibility, shear deformations in walls and the type of plastic hinge model, all affected the magnitudes of forces within floor diaphragms. A range of buildings with different stiffness, strength, height, types of lateral force resisting systems and different locations of the building including different seismic zones and soil types were modelled with the time history analyses method. The results indicated that the magnitudes of inertial forces were primarily related to higher dynamic modes of the structure and the transfer forces were related to the lower modes of vibration of the structure. It was identified that the maximum magnitudes of inertial and transfer forces do not occur simultaneously. The results also indicated that larger inertial and transfer forces, than those predicted by the Equivalent Static Analysis method, developed in the lower levels of the buildings. From these results a static force floor diaphragm design method was developed. Comparisons were made between both the inertial and transfer floor diaphragm forces obtained from the proposed static method, to values from time history analyses. These comparisons indicated that the floor forces obtained by the proposed method were generally larger than the floor forces obtained by the time history results. Elastic and inelastic finite element analyses were used to estimate the in-plane distributions of floor diaphragm forces for floor diaphragms with different geometries and lateral force resisting elements. Comparisons were made between the total tension forces obtained from the finite element analyses and Strut and Tie Analysis methods; these comparisons indicated the relative levels of redistribution of internal forces which could induce cracking within the floor. The comparisons indicated that redistribution cracking in the floors could develop around corner columns, re-entrant corners and openings.
330

Acoustic wave velocities, attenuation and transport properties of some sandstones

Tao, Guo January 1992 (has links)
No description available.

Page generated in 0.0252 seconds