• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1142
  • 197
  • 177
  • 127
  • 55
  • 32
  • 30
  • 14
  • 14
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • Tagged with
  • 2220
  • 337
  • 335
  • 285
  • 237
  • 216
  • 211
  • 199
  • 188
  • 184
  • 168
  • 160
  • 154
  • 151
  • 135
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Total variation and adjoint state methods for seismic wavefield imaging

Anagaw, Amsalu Y. January 2009 (has links)
Thesis (M. Sc.)--University of Alberta, 2009. / Title from PDF file main screen (viewed on Feb. 19, 2010). A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Geophysics, Department of Physics, University of Alberta. Includes bibliographical references.
362

Spectral recomposition and multicomponent seismic image registration

Cai, Yihua, 1978- 20 July 2012 (has links)
Spectral recomposition splits a seismic spectrum into Ricker components. It provides a tool for imaging and mapping temporal bed thicknesses and geologic discontinuities. I propose an application of separable, nonlinear, least-squares estimation in spectral recomposition. Employing the Gauss-Newton method, this approach estimates fundamental signal parameters such as peak frequencies and amplitudes. I applied spectral recomposition to multicomponent seismic data, which provides new perspectives of seismic attributes and multicomponent data interpretation. Correlating S-wave reflection with P -wave reflection is one of the very first steps in multicomponent data interpretation. In a given stratigraphic interval of a geologic section, registration correlates P and S-wave profiles to determine ts /tp ratios, which are equivalent to Vp /Vs ratios for vertical propagation paths. The registration process is largely driven by the availability of dipole sonic logs. However, dipole sonic logs are not as common as standard sonic logs and tend to be affected by various borehole factors. Therefore, new techniques are needed for accurate P P and P S correlation and registration. Assuming P P and P S reflection events have been correctly positioned laterally in migrated images, and the difference between P P wave image and P S wave image can be explained only by vertical transformation, I adopt a multistep approach to register PP and PS images automatically. Setting PP time as a coordinate system, I was able to squeeze P S traces accordingly while keeping the signal pattern of P S wave data. Local seismic attributes, such as the local similarity, help improve registration accuracy. / text
363

Morphologies and controls on development of Pliocene-Pleistocene carbonate platforms : Northern Carnarvon Basin, Northwest Shelf of Australia

Goktas, Pinar 15 November 2013 (has links)
The detailed morphologies, evolution and termination of Neogene tropical carbonate platforms in the Northern Carnarvon Basin (NCB) on the passive margin of the Northwest Shelf of Australia reveal information on the history of local oceanographic processes and changing climate. Cool-water carbonate deposition, dominant during the early-middle Miocene, was superseded by a siliciclastic influx, which prograded across the shelf beginning in the late-middle Miocene during a period of long-term global sea-level fall. The resulting prograding clinoform sets, interpreted as delta lobes, created relict topographic highs following Pliocene termination of the siliciclastic influx (Sanchez et al., 2012a; 2012b). These highs created a favorable shallow-water environment for subsequent photozoan carbonate production. A composite, commercial 3D seismic volume allows investigation of the temporal and spatial evolution of the resulting Pliocene-Pleistocene carbonate platforms. Initiation of carbonate development, in addition to being a response to cessation of siliciclastic influx and the existence of suitable shallow-water substrate, was also influenced by the development of the warm-water Leeuwin Current (LC), flowing southwestward along the margin. Four flat-topped platforms are mapped; each platform top is a sequence boundary defined by onlap above and truncation below the boundary. Successive platforms migrated southwestward, along-strike. Internally, platforms have progradational seismic geometries. The mapped platform tops are large (≥ 10 km wide). Evidence of karst (e.g., v-shaped troughs up to 50m deep and ~1 km wide and broader karst basins up to 20 km2 coverage area) on platform tops suggests episodic subaerial exposure that contributed to the demise of individual platforms. The most recent platform, platform 4, is unique in having interpreted reefs superimposed on the progradational platform base. The base of these reefs now lies at ~153 m and the reefs may therefore have developed post-LGM (~21 Ka). The reefs subsequently drowned, with drowning possibly aided by turbidity associated with formation of adjacent sediment drifts and weakening and strengthening LC during the late Pleistocene. The progressive drowning and termination of platforms from northeast to southwest along strike may result from differential compaction of the deltaic substrate or differential tectonic subsidence caused by the collision at the Banda Arc between the Australian and Pacific plates / text
364

Novel stochastic inversion methods and workflow for reservoir characterization and monitoring

Xue, Yang, active 2013 18 February 2014 (has links)
Reservoir models are generally constructed from seismic, well logs and other related datasets using inversion methods and geostatistics. It has already been recognized by the geoscientists that such a process is prone to non-uniqueness. Practical methods for estimation of uncertainty still remain elusive. In my dissertation, I propose two new methods to estimate uncertainty in reservoir models from seismic, well logs and well production data. The first part of my research is aimed at estimating reservoir impedance models and their uncertainties from seismic data and well logs. This constitutes an inverse problem, and we recognize that multiple models can fit the measurements. A deterministic inversion based on minimization of the error between the observation and forward modeling only provides one of the best-fit models, which is usually band-limited. A complete solution should include both models and their uncertainties, which requires drawing samples from the posterior distribution. A global optimization method called very fast simulated annealing (VFSA) is commonly used to approximate posterior distribution with fast convergence. Here I address some of the limitations of VFSA by developing a new stochastic inference method, named Greedy Annealed Importance Sampling (GAIS). GAIS combines VFSA with greedy importance sampling (GIS), which uses a greedy search in the important regions located by VFSA to attain fast convergence and provide unbiased estimation. I demonstrate the performance of GAIS on post- and pre-stack data from real fields to estimate impedance models. The results indicate that GAIS can estimate both the expectation value and the uncertainties more accurately than using VFSA alone. Furthermore, principal component analysis (PCA) as an efficient parameterization method is employed together with GAIS to improve lateral continuity by simultaneous inversion of all traces. The second part of my research involves estimation of reservoir permeability models and their uncertainties using quantitative joint inversion of dynamic measurements, including synthetic production data and time-lapse seismic related data. Impacts from different objective functions or different data sets on the model uncertainty and model predictability are investigated as well. The results demonstrate that joint inversion of production data and time-lapse seismic related data (water saturation maps here) reduces model uncertainty, improves model predictability and shows superior performance than inversion using one type of data alone. / text
365

Tectonic and depositional history of an active forearc basin, Sandino basin, offshore Nicaragua

Stephens, Jason Henry 03 July 2014 (has links)
High-resolution (20-250 Hz) multichannel seismic (MCS) reflection data with record lengths of 4-8 s TWT, totaling approximately 4620 line km on the shelf and slope of the Sandino forearc basin of offshore western Nicaragua, were acquired in November-December 2004 (cruise EW04-12) and subsequently processed at the University of Texas Institute for Geophysics. Seismic sequence interpretation was conducted using these MCS data in conjunction with deeper penetration (16-20. s TWT) MCS profiles from a previous survey (cruise EW00-05). Age estimates were based on cuttings from intersecting industry wells. Structure and isochron maps were created for 16 sequences and used to identify structural and depositional trends within the Sandino basin. The Tectonostratigraphic evolution of the basin varies considerably along-strike and is divided into five general stages from Late Cretaceous to recent. Evidence for multiple episodes of terrane accretion is observed from Late Eocene to Late Oligocene and potentially during Mid- to Late Miocene as well. Stratal stacking patterns suggest the Nicaraguan margin has not been dominated by subduction erosion during its history and extensional features beneath the slope are interpreted to have originated as a result of processes related to collision of allochthonous terrane of the downgoing plate, sediment underplating, and slab roll-back. With more precise age control, the stable northwestern region of the Sandino basin, where sediment is relatively undeformed since Late Oligocene and measures ≥ 16 km thick, offers a unique convergent margin setting for investigations of forcings on sequence development. / text
366

Seismic reservoir characterization of the Haynesville Shale : rock-physics modeling, prestack seismic inversion and grid searching

Jiang, Meijuan 03 July 2014 (has links)
This dissertation focuses on interpreting the spatial variations of seismic amplitude data as a function of rock properties for the Haynesville Shale. To achieve this goal, I investigate the relationships between the rock properties and elastic properties, and calibrate rock-physics models by constraining both P- and S-wave velocities from well log data. I build a workflow to estimate the rock properties along with uncertainties from the P- and S-wave information. I correlate the estimated rock properties with the seismic amplitude data quantitatively. The rock properties, such as porosity, pore shape and composition, provide very useful information in determining locations with relatively high porosities and large fractions of brittle components favorable for hydraulic fracturing. Here the brittle components will have the fractures remain opened for longer time than the other components. Porosity helps to determine gas capacity and the estimated ultimate recovery (EUR); composition contributes to understand the brittle/ductile strength of shales, and pore shape provides additional information to determine the brittle/ductile strength of the shale. I use effective medium models to constrain P- and S-wave information. The rock-physics model includes an isotropic and an anisotropic effective medium model. The isotropic effective medium model provides a porous rock matrix with multiple mineral phases and pores with different aspect ratios. The anisotropic effective medium model provides frequency- and pore-pressure-dependent anisotropy. I estimate the rock properties with uncertainties using grid searching, conditioned by the calibrated rock-physics models. At well locations, I use the sonic log as input in the rock-physics models. At areas away from the well locations, I use the prestack seismic inverted P- and S-impedances as input in the rock-physics models. The estimated rock properties are correlated with the seismic amplitude data and help to interpret the spatial variations observed from seismic data. I check the accuracy of the estimated rock properties by comparing the elastic properties from seismic inversion and the ones derived from estimated rock properties. Furthermore, I link the estimated rock properties to the microstructure images and interpret the modeling results using observations from microstructure images. The characterization contributes to understand what causes the seismic amplitude variations for the Haynesville Shale. The same seismic reservoir characterization procedure could be applied to other unconventional gas shales. / text
367

Convolutional perfectly matched layers for finite element modeling of wave propagation in unbounded domains

Xu, Boqing, 許博卿 January 2014 (has links)
A general convolutional version of perfectly matched layer (PML) formulation for second-order wave equations with displacement as the only unknown based on the coordinate stretching is proposed in this study, which overcomes the limitation of classical PML in splitting the displacement field and requires only minor modifications to existing finite element programs. The first contribution concerns the development of a robust and efficient finite element program QUAD-CPML based on QUAD4M capable of simulating wave propagation in an unbounded domain. The more efficient hybrid-stress finite element was incorporated into the program to reduce the number of iterations for the equivalent linear dynamic analysis and the total time for the direct time integration. The incorporation of new element types was verified with the QUAD4M solutions to problems of dynamic soil response and the efficiency of hybrid-stress finite element was demonstrated compared to the classical finite elements. The second development involves the implementation of a general convolutional perfectly matched layer (CPML) as an absorbing boundary condition for the modeling of the radiation of wave energy in an unbounded domain. The proposed non-split CPML formulation is displacement-based, which shows great compatibility with the direct time integration. This CPML formulation treats the convolutional terms as external forces and includes an updating scheme to calculate the temporal convolution terms arising from the Fourier transform. In addition, the performance of the CPML has been examined by various problems including a parametric study on a number of key coefficients that control the absorbing ability of the CPML boundary. The final task of this thesis is to apply the developed CPML models to the dynamic analyses of soil-structure interaction (SSI) problems. Typical loading conditions including external load on the structure and underground wave excitation on the medium has been considered. Practical applications of CPML models include the numerical study on the effectiveness of the rubber-soil mixture (RSM) as an earthquake protection material and the report of vibrations induced by the passage of a high-speed train. The former investigates the effectiveness of the CPML models for the evaluation of the performance of RSM subject to seismic excitation and the latter tests the boundary effects on the accuracy of the results for train induced vibrations. Both studies show that CPML as an absorbing boundary condition is theoretically sound and effective for the analysis of soil-structure dynamic response. / published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
368

Characterization of VTI media with PS[subscript v] AVO attributes

Gustie, Patrick John 02 February 2015 (has links)
Amplitude variation with offset (AVO) signatures in vertically transverse isotropic (VTI) media vary as the degree of the anisotropy contrast between layers varies. When the contrasts in two parameters (δ and ε) that quantify the VTI elastic anisotropy are varied, the fraction of energy that reflects from a given layer interface as a mode converted shear wave (R[subscript PS]) also varies for specified angles of incidence. Mode-converted (PS[subscript V]) AVO crossplots may potentially be used to map stratigraphic layers exhibiting intrinsic VTI anisotropy with the moderate to high degrees of weak elastic anisotropy that are often attributed to shale formations. Calculated values of reflected, mode-converted energy as a function of angle of incidence (R[subscript PS](i)) are plotted to determine what mode-converted seismic data indicate about the degree of VTI weak elastic anisotropy present in a given layer. These computations involve varying the degree of weak elastic anisotropy, in this case contrasts in Thomsen’s δ and ε parameters, so that the relationship between these parameters and the amplitude variation with offset (AVO) signature can be quantified. Once this relationship is understood, it may be possible to delineate sweet spot areas of shale formations in seismic data according to how the representative points plot on an AVO crossplot. For such crossplots, the y-intercepts of the reflectivity curves in a particular parameterized space are plotted on the x-axis while the slopes of the parameterized reflectivity curves in this parameterized space are plotted on the y-axis. The grouping of points on the mode-converted AVO crossplots according to the contrast in Thomsen’s δ and ε parameters for weak elastic anisotropy is encouraging. This grouping implies that it may indeed be possible to use an AVO attribute map to characterize a given organic shale formation according to its degree of intrinsic VTI anisotropy. This attribute map would be calibrated to known production data in the locality in order to locate which areas of the mode-converted AVO crossplot predict a likely production sweet spot. / text
369

Seismic performance of concrete columns reinforced with high strength steel

Sokoli, Drit 02 February 2015 (has links)
Test results are presented from an experimental program carried at the University of Texas at Austin aimed at evaluating the seismic performance of concrete columns reinforced with high-strength steel. Comparisons are made between the performance of columns reinforced with conventional Grade 60 steel, and the higher Grade 80. The high-strength steel used in this study is the result of a recent push in the U.S. to produce higher grade reinforcing bars with relatively high ductility. All steel used satisfied the specifications of ASTM A706. Column specimens were tested under constant axial load and reverse cyclic lateral loading until collapse. Columns performed in a similar manner, indicating that current limits on the yield strength of reinforcing bars in seismic applications could be raised to include Grade 80 A706 bars. Conclusions are drawn with respect to the effects of higher strength reinforcement on, member cracking, drift capacity, plasticity spread, plastic hinge performance, and strain demands on reinforcing bars. / text
370

Impact of input ground motions and site variability on seismic site response

Kottke, Albert R. (Albert Richard) 27 August 2015 (has links)
Seismic site response analysis allows an engineer to assess the effect of local soil conditions on the ground motions expected during an earthquake. In seismic site response analysis, an input ground motion on rock is propagated through a site specific soil column. The computed response at the surface is dependent on both the input ground motion and the soil properties that characterize the site. However, there is uncertainty in both the input ground motion and the soil properties, as well as natural variability in the soil properties across a site. To account for the uncertainty in the input ground motions, engineers use a suite of motions that are selected and scaled to fit a scenario input motion. This study introduces a semi-automated method to select and scale the input motions to fit a target input motion and its variability. The proposed method is intended to replace tedious trials of combinations by hand with combinations performed by a computer. However, as in the traditional selection methods, the final selection of the combination is done by the engineer.The effect of the selected ground motion combination on the computed surface response spectrum from the site response analysis, and its variability, was investigated in this study. The results show by using a combination with as few as five motions, the median surface response spectrum can be predicted with an error of 10%. Additionally, the manner used to scale the input motions does not impact the accuracy of the median surface response spectrum, as long as the median response spectrum of the input combination agrees with the target input response spectrum. However, if the standard deviation of the surface response spectrum is to be considered (e.g., to develop median plus one standard deviation spectra), a input combination of at least 20 motions is recommended and the combination must be scaled such that the standard deviation of the input combination matches the standard deviation of the input target spectrum. Monte Carlo simulations were used to assess the impact of soil property variability on surface spectra computed by seismic site response. The results from this study indicate that by accounting for the variability of the shear-wave velocity profile of a site can cause a significant decrease in the median surface response spectrum, as well as a slight increase in the standard deviation of the surface response spectrum at periods less than the site period. By considering the variability of the nonlinear properties (shear modulus reduction and damping ratio) the median response spectrum decreased only slightly, but the standard deviation increased in a manner similar to the increase observed when considering the variability of the shear-wave velocity profile. Simultaneously considering the variability of the shear-wave velocity profile and nonlinear properties resulted in a median surface response spectrumsimilar to the median surface response spectrumcomputed with considering the variability of the shear-wave velocity alone. However, the standard deviation of the surface response spectrum was larger than the standard deviation computed by independent consideration of the variability of the shear-wave velocity or nonlinear properties.

Page generated in 0.0408 seconds