Spelling suggestions: "subject:"eismic design"" "subject:"eismic 1design""
31 |
Multi-Hazard Assessment and Performance-Based Design of Facade Systems including Building Frame InteractionSlovenec, Derek 28 August 2019 (has links)
No description available.
|
32 |
Concrete Confined by Noncompliant Continuously Wound TiesMosier, Elizabeth 05 June 2023 (has links)
No description available.
|
33 |
Lateral-Torsional Buckling Capacity of Tapered-Flange Moment Frame ShapesO'Neill, Leah 01 December 2014 (has links) (PDF)
While moment frames are a popular lateral-force resisting system, their constant cross-section can lead to inefficiencies in energy absorption and stiffness. By tapering the flange width linearly toward the center of the beam length, the energy absorption efficiency can be increased, leading to a better elastic response from the beam and more elastic stiffness per pound of steel used. Lateral-torsional buckling is an important failure mode to be considered for tapered-flange moment frame shapes. No closed-form or finite element solutions have yet been developed for tapered-flange I-beams with a non-uniform, linear moment gradient and intermediate bracing conditions. In this study, finite element analysis is used to find the buckling stress of each W-shape in the AISC Steel Construction Manual with both a standard straight-flange and the proposed tapered-flange at several lengths and with three intermediate lateral bracing conditions (no bracing, mid-span bracing, and third-span bracing). Plots are generated for each shape at each bracing condition as the buckling stress versus length for both beams and columns. Overall, the results indicate that lateral-torsional buckling of tapered-flange I-beams is not a problem that would prohibit the wide-scale use of this configuration in moment frames. Also, the buckling capacity tapered-flange moment frame shapes can be reasonably estimated as 20% of the corresponding straight-flange moment frame shape.
|
34 |
Load-Deformation Behavior of Tension-Only X-Brace Roof Truss DiaphragmsMeek, Benjamin Johnson 17 April 2023 (has links) (PDF)
The alternative seismic design provisions for diaphragms provided in ASCE 7-22 Minimum design loads and associated criteria for buildings and other structures Section 12.10.3 account for both diaphragm ductility and displacement capacity, producing more accurate design forces and decreased detailing when compared to conventional seismic design methods. However, the diaphragm design force reduction factor has not yet been determined for tension-only roof truss diaphragms, a common system used in metal buildings. In this study, experimental tests of two cantilevered diaphragm subassembly specimens with tension-only rod bracing were conducted to determine the load-deformation behavior of the system. The first specimen used 7/8-in. rods, two types of hillside washers, two types of compression members, and two configurations of lateral bracing. The second specimen used 3/4-in. rods, one type of hillside washer, one type of compression member, and one configuration of lateral bracing. Four tests were conducted. One additional test was conducted on each specimen to determine the friction in the test setup. The system developed significant ductility during testing and the yield mechanism was primarily tensile yielding of the rods. The results indicate that a diaphragm design force reduction factor of 2.0 for structures with periods greater than 1.0 second and 1.7 for structures with periods between 0.12 and 0.5 seconds may be appropriate for metal building systems if the lateral bracing of the compression member is prevented from buckling.
|
35 |
Using Buckling-Restrained Braces in Eccentric ConfigurationsPrinz, Gary S. 22 April 2010 (has links) (PDF)
Ductile braced frames are often used to resist lateral earthquake loads in steel buildings; however the presence of a brace element can sometimes interfere with architectural features. One common type of ductile braced frame system sometimes used to accommodate architectural features is the eccentrically braced frame (EBF). In order to dissipate seismic forces, EBF beam regions (called links) must sustain large inelastic deformations. EBF links with column connections must transmit large moments and shear forces to facilitate link rotation. Experiments have shown that welded link-to-column connections tend to fracture in the link flange prior to large link rotations. This study investigated methods for improving EBF link-to-column connection performance, and proposed an alternative ductile braced frame system for accommodating architectural features. Several EBF links with reduced web and flange sections were analytically investigated using validated finite element models in ABAQUS. Results indicated that putting holes in the link web reduced stress and strain values in the link flanges at the connection, but increased the plastic strain and stress triaxiality in the web at the edges of holes. Removing area from the link flanges had little effect on connection stresses and strains. Thus, the reduced web section and reduced flange section methods are not a promising solution to the EBF link-to-column connection problem. The alternative braced frame system proposed in the dissertation used ductile beam splices and buckling-restrained braces in eccentric configurations (BRBF-Es) to accommodate architectural features. Design considerations for the BRBF-Es were determined and dynamic BRBF-E performance was compared with EBF performance. BRBF-E system and component performance was determined using multiple finite element methods. Inter-story drifts and residual drifts for the BRBF-Es were similar to those for EBFs. Results indicated that BRBF-Es are a viable alternative to the EBF, and may result in better design economy than EBFs. With the BRBF-E, damage was isolated within the brace, and in the EBF, damage was isolated within the link, indicating simpler repairs with the BRBF-E. Shop welding of BRBF-E members may replace the multiple field welds required in EBF construction.
|
36 |
Hybrid Steel FramesAtlayan, Ozgur 22 April 2013 (has links)
The buildings that are designed according to the building codes generally perform well at severe performance objectives (like life safety) under high earthquake hazard levels. However, the building performance at low performance objectives (like immediate occupancy) under low earthquake hazards is uncertain. The motivation of this research is to modify the design and detailing rules to make the traditional systems perform better at multi-level hazards.
This research introduces two new structural steel systems: hybrid Buckling Restrained Braced Frames (BRBF) and hybrid steel Moment Frames (MF). The "hybrid" term for the BRBF system comes from the use of different steel material including carbon steel (A36), high-performance steel (HPS) and low yield point (LYP) steel. The hybridity of the moment frames is related to the sequence in the plastification of the system which is provided by using weaker and stronger girder sections. Alternative moment frame connections incorporating the use of LYP steel plates are also investigated.
The hybrid BRBF approach was evaluated on seventeen regular (standard) frames with different story heights, seismic design categories and building plans. By varying the steel areas and materials in the BRB cores, three hybrid BRBFs were developed for each regular (standard) frame and their behavior was compared against each other through pushover and incremental dynamic analyses. The benefits of the hybridity were presented using different damage measures such as story accelerations, interstory drifts, and residual displacements. Collapse performance evaluation was also provided.
The performance of hybrid moment frames was investigated on a design space including forty-two moment frame archetypes. Two different hybrid combinations were implemented in the designs with different column sections and different strong column-weak beam (SC/WB) ratios. The efficiency of the hybrid moment frame in which only the girder sizes were changed to control the plastification was compared with regular moment frame designs with higher SC/WB ratios. As side studies, the effect of shallow and deep column sections and SC/WB ratios on the moment frame behavior were also investigated.
In order to provide adequate ductility in the reduced capacity bays with special detailing, alternative hybrid moment frame connections adapting the use of low strength steel were also studied. / PhD
|
37 |
Effect of Viscous Fluid Dampers on Steel Moment Frame Designed for Strength and Hybrid Steel Moment Frame DesignAtlayan, Ozgur 22 May 2008 (has links)
The first purpose of this research is to investigate the effect of added viscous fluid dampers on a nine story special steel moment frame designed for strength in Seattle. At the initial stages of the work, knowing the fact that moment frames are almost always controlled by drift, it was thought that two different moment frames, controlled by strength or controlled by drift (stiffness), could be designed in Seattle and the effect of additional dampers on the structural behavior of the strength controlled design could be studied.
However, since ASCE 7 permits determining the elastic drifts by using the seismic design forces based on the computed fundamental period of the structure, without the upper limit (CuTa), the strength controlled design satisfied the drift limit requirements of ASCE 7. Although the strength controlled design meets the drift requirements, the stability checks of both ASCE 7 and the AISC Seismic Design Manual were not satisfied. Thus, the strength controlled frame was redesigned to meet the stability requirements, and the process is called stability controlled design.
By adding supplemental dampers to the strength controlled design, it was expected that the seismic drift would be controlled and a better structural behavior would be obtained in terms of dynamic stability. Incremental Dynamic Analysis (IDA) was implemented to investigate the benefits of the dampers on the structural behavior. Using ten different earthquakes scaled up to a maximum target multiplier two, with ten increments, damage measures such as interstory drift, residual displacement, IDA dispersion, base shear, and roof displacement were studied. Using IDA dispersion, the effect of dampers on dynamic instability was also investigated in this study.
As a result, it was found that as the damping of the structure increases with the help of added dampers, the structural response gets better. Maximum and residual roof displacements, interstory drifts, and IDA dispersion decreases with increasing damping. In addition, by using supplemental damping, most of the collapses that occur for the inherently damped frames are prevented.
The second purpose of this research is to develop an improved "Hybrid" moment frame without added damping but by controlling the inelastic behavior. Hybrid Frames were designed as the combination of three different moment frames: Special, Intermediate and Ordinary Moment Frames (SMF, IMF, OMF). The design procedure of each bay, which corresponds to different moment frame systems, follows the rules of the related moment frame for that bay. By varying the plastic hinge capacities across the same level stories, four different Hybrid Frame designs were obtained. Nonlinear static pushover analysis was applied to these frames, and as expected, the more reduction in the plastic capacity of the Hybrid Frame, the earlier the pushover curve starts yielding and the later the negative post yield stiffness of the pushover curve was reached. It was observed that the effect of early plastic hinge forming in the frame, which caused inelastic hysteretic damping, and the relatively late formation of negative post yield stiffness resulted in a better dynamic behavior.
As a result of the IDA studies, as the frames become more "hybrid", the residual displacements decrease significantly and then collapses are even prevented. This is considered as the positive effect of reaching the negative post yield stiffness late. The residual displacement was reduced for low intensity gentle earthquakes. The ductility demand IDA study proves that as the frames become more hybrid, the ductility demand increases for the special detailing frame, where plastic capacity was reduced, and decreases for the ordinary detailing frame, where the plastic capacity was increased. The Hybrid Frame system is expected to perform better than the traditional special moment frame, and to be more economical than the special moment frame because of the limited amount of special detailing. / Master of Science
|
38 |
Using Incremental Dynamic Analysis to Visualize the Effects of Viscous Fluid Dampers on Steel Moment Frame DriftKruep, Stephanie Jean 11 September 2007 (has links)
This thesis presents the details of a study regarding both the use of linear viscous fluid dampers in controlling the interstory drift in steel moment frames, and the use of incremental dynamic analysis as a method of visualizing the behavior of these moment frames when subjected to seismic load effects. Models of three story and nine story steel moment frames were designed to meet typical strength requirements for office buildings in Seattle, Washington. These models were intentionally designed to violate seismic interstory drift restrictions to test the ability of the linear viscous fluid dampers to reduce these drifts to the point of code compliance. Dampers were included in one bay of every story in each model. These devices were used to produce total structural damping ratios of 5%, 10%, 20%, and 30% of critical. Undamped, traditional stiffness controlled models of both three stories and nine stories were also created for comparison purposes. Incremental dynamic analysis was used to subject these models to ten ground motions, each scaled to twenty incremental levels. Two new computer applications were written to facilitate this process. The results of these analyses were studied to determine if the linear viscous fluid dampers were able to cause compliance with codified drift limits. Also, incremental dynamic analysis plots were created to examine the effects of the dampers on structural behavior as damping increased from inherent to 30% of critical. It was found that including linear viscous fluid dampers in steel moment frame design can satisfactorily control interstory drift, and incremental dynamic analysis is a beneficial tool in visualizing dynamic structural behavior. / Master of Science
|
39 |
Analytical Investigation of the Effect of Partially-Restrained Connections on Hybrid Moment-Resisting Steel FramesKozma Thomas, Mathias A. 13 October 2014 (has links)
No description available.
|
40 |
SEISMIC DESIGN AND EVALUATION OF BASE ISOLATED STEEL STORAGE RACKSSabzehzar, Saman January 2016 (has links)
No description available.
|
Page generated in 0.0663 seconds